Ünlü Matematikçiler

John Forbes Nash ( 1928 – ) John Forbes Nash, 13 Haziran 1928’de Batı Virginia, Amerika’da dünyaya geldi. Oğluyla aynı adı taşıyan baba John Nash, Teksas A&M Üniversitesi mezunu bir elektrik mühendisi, annesi Margaret Virginia Martin ise bir Latince ve İngilizce öğretmeniydi, Batı Virginia Üniversitesi mezunuydu. 16 Kasım 1930’da kız kardeşi Martha doğdu. İlkokuldan önce anaokuluna kaydolan Nash, henüz çocukken Compton’s Picture Encyclopedia adlı resimli ansiklopediyi okuyor ve birçok şey öğreniyordu. Time Dergisi de ilgisini çekiyordu. Mutlu bir çocukluk geçirdi. 12 yaşındayken evde kendi kendine deneyler yapmaya başladı. O zamanlarda da insanlarla çalışmayı değil, kendi kendine olmayı sevdiği belliydi. Kız kardeşi normal bir çocuktu ancak Nash diğer çocuklardan çok farklıydı, onların oyunları, şakaları Nash’e garip geliyordu, kısa sürede kendini herkesden soyutlamıştı. Annesi ve babası, Nash’in kitap merakını gördükleri için ona bir yetişkin gibi davranmaya, eğitimini teşvik etmeye başladılar. Nash’in matematik sevdasını ortaya çıkaran eser, lise yıllarında okuduğu, E.T. Bell’in “Men of Mathematics” adlı kitabı oldu. Lisede okuduğu sırada Bluefield College adlı üniversiteden dersler almaya başladı. Liseyi bitirdikten sonra Westinghouse bursuyla Carnegie Institute of Technology adlı üniversiteye kaydoldu, bölümü ise kimya mühendisliğiydi. Ancak Nash bu bölümden ayrılarak kimya bölümüne, daha sonra da matematiğe geçti. 1948 yılında hem lisans, hem de master derecesini aldı. Mezun olduktan sonra bir donanma projesi üzerinde çalışmaya başladı. Nash bir süre sonra “Denkleştirme Kuramı” üzerine çalışmak amacıyla Princeton Üniversitesi’ne gitti. Hem Princeton’dan hem de Harvard Üniversitesi’nden teklif gelmişti ancak ailesinin yaşadığı yer olan Bluefield’a yakınlığı ve akademisyenlerinin Nash’e gösterdiği ilgi sayesinde, Princeton’a gitmeyi tercih etti. 1950 yılında doktorasını buradan aldı. Doktora tezi, daha sonra “Nash Dengesi” adını taşıyacak olan, “Oyun Teorisi”nin en önemli parçalarından olan bir çalışmaydı. Bu çalışması 3 makaleyi beraberinde getirdi; “Equilibrium Points in N-person Games” (1950), “The Bargaining Problem” (1950) ve “Two-person Cooperative Games” (1953). Ayrıca cebirsel geometri alanında önemli çalışmalar yaptı. 1951’de Massachusetts Institute of Technology’de (MIT) öğretmenlik yapmaya başladı. 1959’da bu görevinden istifa etti. Nash, 1958 yılında şizorfeni belirtileri göstermeye başladı. Ancak Princeton’da geçirdiği 4 yıl boyunca (1945 – 1949) kayıtlarda yalnız yaşadığı görünse de, bir oda arkadaşının olduğunu düşünüyordu. 1959 yılında yatırıldığı hastanede kendine güvensizlik, depresyon ve paranoyak şizofreni tanıları kondu. Paris ve Cenevre’de bir süre yaşadıktan sonra 1960’ta Princeton’a geri döndü, 1970’e kadar birçok kez hastaneye yattı. Bu yıllarda ilaç tedavisini kesmeye karar verdi. Biyografisinin yazarı Sylvia Nasar’a göre yavaş yavaş iyileşmeye başladı, bu süreçte eşi de ona büyük destek verdi. Nash, çalışmalarının karşılığını almaya 1978 yılında başladı. Bu yıl “John Von Neumann Teori Ödülü”nü, 1994’te ekonomi dalında Nobel Ödülü’nü, 1999’da “Leroy P. Steele Ödülü”nü aldı. 2001 yapımı “A Beautiful Mind” (Akıl Oyunları) adlı film, John Nash’in hayatından esinlenilerek yapıldı ve film 4 Akademi Ödülü kazandı. Senaryo, aynı adlı biyografi üzerine yazılmıştı. Ancak bu biyografi ve Nash’in gerçek hayatı arasında örtüşmezlikler vardı. Massachusetts Institute of Technology’de, El Salvador’lu bir fizik öğrencisi olan Alicia Lopez-Harrison de Lardé ile tanıştı. İkili Şubat 1957’de evlendi. 1959 yılında eşi Nash’i şizofreni tedavisi için akıl hastanesine yatırdı. Bu olaydan hemen sonra oğulları John Charles Martin dünyaya geldi ancak 1 yıl kadar ismi konulmadı çünkü Alicia, eşinin de bu konuda bir fikir vermesini istemişti. John Martin de babası gibi bir matematikçi oldu ve sonraları ona da şizofreni teşhisi kondu. Nash, Eleanor Stier’den 19 Haziran 1953 doğumlu bir çocuğa daha sahipti ancak ne annesiyle ne de çocuğuyla yakın ilgisi oldu. Alicia Lopez- John Nash çifti 1963’te boşandı ve 1970’te tekrar biraraya geldi. Bu tarihten itibaren darılıp barışan çift, kendileri hakkında “aynı çatı altındaki iki yabancı” benzetmesini yapmıştı. Nash 1994’te Nobel Ödülü’nü kazandıktan sonra aralarını düzelttiler ve 1 Haziran 2001’de tekrar evlendiler. Nash, 1945 ve 1996 yılları arasında 23 bilimsel çalışma yayınladı, ayrıca “Essays on Game Theory” (1996) ve “The Essential John Nash” isimli kitapları yazdı. Aynı zamanda “Hex” ve “So Long Sucker” adlı 2 popüler oyunun yaratıcıları arasında. Şu anda Princeton’da matematik üzerine çalışmalar yapmakta..

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/691-john-forbes-nash

Cahit Arf ( 1910 – 1997 ) Ülkemizde matematiğin simgesi haline gelen Cahit ARF 1910 yılında Selanik’te doğdu. 1932 yılında Galatasaray Lisesi’nde matematik öğretmenliği, 1933 yılında İstanbul Üniversitesi Fen Fakültesi’nde profesör yardımcısı (Doçent adayı) olmuştur. Doktorasını 1938 yılında Almanya’da Clölting Üniversitesi’nde tamamladı. Daha sonra İstanbul Üniversitesi’ne dönen ARF. 1943’de profesör. 1955’de Ordinaryüs Profesör oldu. 1964-1965 yılları arasında Fransa’da bulunan Prineiton’dakı Yüksek Araştırma Enstitüsü’nde konuk öğretim üyesi olarak görev yaptı. 1938 yılından beri Cahit ARF cebir, sayılar teorisi, elastisite teorisi, analiz, geometri ve mühendislik matematiği gibi çok çeşitli alanlarda yaptığı çalışmalarla matematiğe temel katkılarda bulunmuş, yapısal ve kalıcı sonuçlar elde etmiştir. Bütün Türk matematikçilerine dolaylı veya dolaysız bir şekilde esin kaynağı olmuş, yaptığı uyarılar ve verdiği fikirlerle çevresindeki tüm matematikçilerin ufuklarını genişletmiş ve çalışmalarını yeni bir bakış açısıyla yönlendirmelerini saklamıştır. Cahit ARF’ın ilk çalışması, 1939 yılında Almanya’nın ünlü bir matematik dergisi olan Crelle Journal Dergisi’nde yayınlanmıştır. Cahit ARF çözülebilen cebirsel denklemlerin bir listesini yapmak amacıyla Göttingen’de ünlü matematikçi Hasse’nin doktora öğrencisi oldu. Hasse’nin önerisiyle özel hallerle problemini çözdü. Cahit ARF bu çalışmasıyla sayılar teorisinde çok özel bir yeri olan lokal cisimlerde dallanma teorisine çok öneli yapısal bir katkıda bulunmuştur. Burada bulduğu sonuçlardan bir bölümü dünya matematik literatüründe “Hasse-Arf teoremi” olarak geçmektedir. Bundan sonra uğraştığı problem, matematikte “kuadratik formlar” olarak bilinen konudadır. Uzayda konisel yüzey denklemleri buna basit bir örnek olarak gösterilebilir. Bu konudaki temel problem, kuadratik formların bir takım invariantlar, yani değişmezler yardımıyla sınıflandırılmasıdır. Bu sınıflandırma Witt adında ünlü bir Alman matematikçi tarafından karakteristiği ikiden farklı olan cisimler için 1937’de yapılmıştır. Karakteristik iki olunca problem çok daha zorlaşıyor ve Witt’in yöntemi uygulanamıyordu. Cahit ARF bu problemle uğraştığı ve karakteristiği iki olan cisimler üzerindeki kuadratik formları çok iyi bir biçimde sınıflandırdı. Bunların invariantlarını, yani değişmezlerini inşa etti. Bu invariantlar dünya literatüründe “Arf İnvariantlan” olarak geçmektedir. Bu çalışması 1944 yılında Crelle dergisinde yayınlandı ve Cahit ARF’ı dünyaya tanıttı. 1945’lere gelindiğinde düzlem bir eğrinin herhangi bir kolundaki çok kat noktaların çok katlılıklarının yalnız aritmetiğe ait bir yöntem ile nasıl hesaplanacağı iyi bilinmekteydi. Düzlem halde algoritmanın başladığı sayılar eğri kolunun parametreli denklemlerinden bilinen bir kanuna göre elde ediliyordu. Genel durumda ise böyle bir sonuç henüz bulunamamıştı. Hu sıralarda İstanbul’da Patrick du Val adında İngiliz bir matematikçi bulunuyordu. Du Val genel halde algoritmanın başladığı sayılara “karakter” adını vermiş ve eğrinin tüm geometrik özelliklen bilindiği zaman bu karakterlerin nasıl bulunacağını göstermişti. Bunun tersi de doğruydu. Bu karakter bilinirse, eğrinin çok katillik di/isi, yani geometrik özellikleri de bulunabiliyordu. Burada açık kalan problem ise bir eğrinin parametreli denklemleri verildiğinde karakterlerini bulabilmek idi. Cevap düzlem eğriler için bilinmekte, ama yüksek boyutlu uzaylarda bulunan tekil eğriler için bilinmemekte idi. Ayrıca, yüksek boyutlu bir uzayda tanımlanmış bir tekil eğrinin çok katillik özelliklerini, yani geometrik özelliklerini bozmadan en düşük kaç boyutlu uzaya sokulabileceği de bu problemle beraber düşünülen bir soru idi. Bu çeşit sorular matematiksel bakış açısının temel problemi olan sınıflandırma probleminin eğrilere uygulanması bakımından son derece önemli ve zor sorulardı. Cahit ARF bu problemi 1945’de tamamıyla çözmüş ve tek boyutlu tekil cebirsel kolların sınıflandırılması problemini kapatmıştır. Bu sonucun zorluğu hakkında fikir elde edebilmek için düzgün varyetelerin sınıflandırılması probleminin bugüne kadar yalnız 1. 2 ve kısmen 3 boyutlu varyeteler için çözüldüğünü tekilliklerinin sınıflandırılması probleminin ise l boyutlu varyeteler, eğriler için Cahit ARF tarafından çözüldüğünü göz önüne almak gerekir. Cahit ARF bu problemi çözerken önemini gözlediği ve problemin çözümünde en önemli rolü oynadığını farkettiği bazı halkalara “karakteristik halka” adını vermiş ve daha sonra gelen yabancı araştırmacılar bu halkalara “Arf halkaları” ve bunların kapanışlarına “Arf kapanışları” adını vermişlerdir. Cahit ARF’ın bu çalışması 1949’da Proceedings of London Mathematical Society dergisinde yayınlanmıştır. Cahit ARF’ın 1940’lı yıllarda yaptığı bu çalışmaların günümüzde hala kullanılıyor olması, onun kalıcılığını ispatlamıştır. Cahit ARF’ı ilk tanıyan bir kişi onun sadece matematiğe ilgi duyan bir insan olduğu izlenimini edinebilirdi. Cahit ARF için. matematik her şeyin üzerinde ve ötesindeydi. Ancak, onun TÜBİTAK’ın kurulmasında ve gelişmesinde gösterdiği çabayı ve özeni bilenler Cahit ARF’ın öyle içine kapanık, matematikle uğraşan dış dünyayla ilgilenmeyen bir kişi olmadığını bilirler. Mühendisliğin günlük hayattan doğan problemlerine her zaman ilgi gösterirdi. Ama, bu probleme mutlaka matematiksel bir model bulmaya da çalışırdı. Hele bir de pratikten gelen problemi matematik olarak çözüme kavuşturursa pek keyiflenirdi. Mustafa İNAN’la böyle bir işbirliği yapmış ve İNAN’ın köprülerde gözlemleyip, araştırdığı bir sorunun matematiksel kesin çözümünü vermiştir. Bu çalışmaları Cahit ARF’a İnönü Ödülünü kazandırmıştır. Üniversitede rektörlük, dekanlık gibi idari görevler almaktan kaçınmıştır. Araştırmacıların bu gibi görevlerden uzak durmaları gerektiği görüşündeydi. Ama uzun yıllar TÜBİTAK Bilim Kurulu Başkanlığını da özveriyle yürütmüştür. Ortadoğu Teknik Üniversitesi’nde bulunduğu yıllarda yeni ve farklı bir üniversite modelinin ve kültürünün ortaya çıkması için çaba göstermiştir. Akademik dünyanın yapay hiyerarşik ayrımlarıyla alay etmiştir. Genç öğretim üyeleri ve öğrencilerle çok güzel, yararlı ve keyifli bir diyalog içindeydi. Her zaman üniversite içi çekişmelerden ve politikadan özenle uzak durduğu halde. ODTÜ sistemi tehlikeye düştüğünde duyarlı ve sorumlu bir bilim adamı olarak kendini bir mücadelenin içine atmaktan çekinmemiştir. Bu onurlu mücadelede bile matematiğin aksiyomatik yaklaşımını kimseye fark ettirmeden kullanmıştır. Cahit ARF 1948’de İnönü Ödülü, 1974’de TÜBİTAK Bilim Ödülü, 1980’de İTÜ ve KTÜ Onur Doktorası, 1981’de de ODTÜ Onur Doktorasını aldı, genç yaşta Mainz Akademisi Muhabir üyeliğine seçildi ve Türkiye Bilimler Akademisi Onur Üyesi olmuştur. Cahit ARF matematikte kalıcı izler bırakarak 26 Aralık 1997’de aramızdan ayrılmıştır. Türkiye’de ve dünyada her zaman hatırlanacaktır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/214-cahit-arf-1910-1997

Ali Kuşçu ( ? – 1474 ) Türk-İslam Dünyasının büyük matematik ve astronomi bilgini. Doğum yeri kesin olarak bilinmemekte; 15 yy.’ın başlarında ‘ta doğduğu kabul edilmektedir.. Uluğ Bey’in hükümdarlığı sırasında Semerkant’ta ilk ve dini öğrenimini tamamladı. Küçük yaşta Matematik ve Astronomi’ye karşı aşırı bir ilgi duydu. Devrinin en büyük alimleri olan Uluğ Bey, Bursalı Kadızade Rumi, Gıyaseddin Cemşid ve Muniüd’den aldığı ilimlerle yetinmeyip, daha fazlasını öğrenme arzusu ve isteği ile kimseye haber vermeden, sinesinde ünlü alimlerin toplandığı Kirman’a gitti. Kirman’da bulunduğu sırada akli ve nakli ilimleri üzerinde çalışmalara devam edip, burada “Hall-ül Eşkalil Kamer” risalesini, “Şerh-i Tecrid” adlı eserini hazırladı. Kirman’dan tekrear Semerkant’a dönen Ali Kuşçu, Kazade Rumi’nin ölümü üzerine Uluğ Bey tarafından Semerkant Rasathanesi’ne müdür olarak tayin edildi. Uluğ Bey’in katledilmesinden sonra Semerkant Medresesi’ndeki dersleri ile rasathanedeki çalışmalarına son vererek, Semerkant’tan ayrılıp Tebriz’e, Akkoyunlu hükümdarı Uzun Hasan’ın yanına gitmiştir. Daha sonra Uzun Hasan tarafından Osmanlılar ile Akkoyunlular arasında barışı sağlamak amacı ile Fatih’e elçi olarak gönderilmiştir. Elçilik görevini tamamlar tamamlamaz Fatih’in ısrarıyla İstanbul’a gelmiştir. İstanbul’a geldiğinde II. Mehmet kendisini Ayasofya Medresesi’ne müderris olarak tayin etti. Bunun yanında kendi hususi kütüphanesinin müdürlük görevini de verdi. İstanbul Medreseleri’nde astronomi ve matematik dersleri vermiştir. Ali Kuşçu’nun çalışmaları neticesinde büyük gelişmeler görülmüş, bunda medsreselerde matematik derslerinin okutulmasında önemli rolu olmuştur.İstanbul’un enlem ve boylamını ölçmüş ve çeşitli Güneş saatleri yapmıştır. Derslerine İstanbul’un meşhur alimleri de katılırdı. İlim sahasında hizmet ve adları il ün yapmış olan Hoca Sinan Paşa, Molla Lütfi ve Ali Kuşçu’nun oğlu Mirim Çelebi gibi alimler onun derslerinde yetiştiler. Ali Kuşçu yalnız telif eserleriyle değil, çalışma ve yol göstermesiyle devrini aşan büyük bir alimdir. Ali Kuşçu’nun İstanbul Medreselerinde ders vermesiyle Osmanlılarda Pozitif bilimlerde bir canlanma yaşanmış ve 16. yüzyılda semeresini vermeye başlamış,Mirim Çelebi ve Takiyüddin gibi önemli astronomlar yetişmiştir. Ölümü ise 16 Aralık 1474 olup, mezarı Eyyüp Sultan Türbesi yanındadır. Eserleri: < br />Risale Fi’Hey’e: 1457 yılında, Semerkant’ta, Farsça olarak yazmıştır. Osmanlı Mühendishanesi’nde XIX. asır başlarında ders kitabı olarak okutuldu. Risale Fi’l-Fethiye: Astronomiden bahseden bu eser, bir önceki eserin eklerle Arapça’ya çevrilmişidir. Bu eserde, ekliptiğin eğimini hesap eden Ali Kuşçu, “23 30 17 ” olarak bulmuştur. Bugün bulunan değer ise, “23 27 00” dır. Bu iki değer arasındaki küçük fark, Ali Kuşçu’nun Astronomi’deki üstün bilgisini ortaya koyar. Risale Fil Hesap: Matematik kitabıdır. Risale Fil Muhammediye: Cebir ve hesap konularından bahseden matematik kitabıdır. Eserin son sayfasında Ali Kuşçu’nun kendi el yazısı ile bir imzası ve eserin 1472 yılında bittiğini belirten bir kayıt vardır. Bunlardan başka Uluğ Bey Ziya’ine yazdığı şerh en mühim eseri olup, çok kıymetlidir.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/213-ali-kuscu-1474

Uluğ Bey ( 1394 – 1449 ) Bilim tarihinde 15. Yüzyıl Astronomu olarak tanınır.Timur’un torunu, Şahruh’un oğlu Maveraünnehir’in Genel Valisi ve Timurlu devletinin İmparatorudur. Semerkant’ta medreseler yaptırdı. Semerkant Rasthanesini kurdu. Bilim ve fenle uğraşarak ününü siyasetten çok bilim ve kültür alanında yaptı. Döneminde ünlü bilginleri toparlıyarak Semerkant’ı uygarlığın başlıca merkezi durumuna getirdi.Bunda Kadızade Rumi ve Gıyaseddin Cemşid ‘in büyük etkisi olmuştur. Kendisini de Tarihçi,matematikçi ve gökbilimçiydi.Kurduğu Gözlemevinde yapılan gözlemler sonucu hazırladığı Uluğ Bey Ziyci adlı eseri Doğu ve Batı Bilim dünyasında bir kaç yüzyıl boyunca kullanılmıştır. 1841 ve 1853 de ingilizceye tercüme edilmiş ve bu eser hakkında son makale 1917 yılında Müşteşrik E.D.Knobel tarafından yazıldığı düşünülürse eserin yazıldığı tarihtan beş yüzyıl geçmesine rağmen etkinliğini sürdürmüştür.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/212-ulug-bey-1394-1449

 

 

Ömer Hayyam ( 1048 ? -1122 ? ) Ömer Hayyam 11. yüzyılın ikinci yarısının en ünlü matematikçi ve astronomu İranlı bilgin. Astronomi, müzik, fizik, matematik dallarında eserler verdi. Üçüncü dereceden denklemlerin çözümlerine ilişkin genel bir yöntem geliştirdi. Öklit’in paraleller aksiyomu üzerine özgün çalışmalar gerçekleştirdi. Günümüzdeki esas ününü şairliği ve rubaileriyle kazanmıştır. Doğum ve ölüm tarihleri kesin olarak bilinmiyor. Bazı araştırmacılar 1048-1122 yılları arasında yaşadığını belirtiyorlar.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/211-omer-hayyam-1048-1122

El Biruni Ebu’l Reyhan-I Beyrunî ( 973 – 1048 ) 11. yüzyılın ilk yarısının en ünlü astronom ve matematikçisi. Felsefe ve coğrafya alanlarında da çalışmalar yaptı. Sayılar kuramı, Hint hesabı, ay ve güneş tutulmaları, matematik coğrafya, enlem ve boylam tayini, kuyruklu yıldızlar, küre geometrisi gibi konularda yazılmış 113 kadar eseri (toplam sayfası 13.000 ‘u geçer) bilinir. Geometride, açıyı üçe bölme problemini de içeren cetvel ve pergel ile çözülemeyen bir grup problem vardır ki, bunlar matematik tarihinde “Biruni problemleri” olarak bilinir. Daire içine çizilmiş 9 kenarlı düzgün poligonun bir kenarının uzunluğunu özgün bir yöntemle hesapladı. Pi sayısının hesabı üzerine çalıştı, sinüsler teoremini kendine özgü bir yöntemle kanıtladı. Trigonometriye sekant, cosecant ve cotangent fonksiyonlarını eklemiştir.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/210-el-biruni-ebul-reyhan-i-beyruni-973-1048

İbn-I Sina ( 980 – 1037 ) Batıda Avicenna adıyla bilinen büyük fizikçi, filozof, matematikçi ve hekim. Matematikte sayılar kuramını Diophantus yöntemleri üzerine kurarak, bu teoremlere önemli ekler yaptı. Bir tam sayının 9’la bölümünden kalan artıkları bilindiğinde, bu sayının karesinin ve kübünün 9’la bölümünden kalan artıkları bulmak üzerine geliştirdiği yöntem meşhurdur. Esas ününü, felsefe ve tıp alanında yapmıştır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/209-ibn-i-sina-980-1037

 

 

 

 

Sabit Bin Kurra ( 821 – 901 ) Batlamyus’un ünlü eserini zamanın bilim dili olan Arapça’ya Algamesti adıyla yorumlu açıklama yapar. Sabit bin Kurra, Batlamyus’un eserinde bulunan bilgilerin yanında kendi görüşü ve zamanı için yeni olan bazı trigonometri ve astronomi bilgisini de eklemiştir. Nasiruddin Tusi, ilgili eserinde aynen şunları yazar: “Sabit bin Kurra’nın, bu Arapça şerhinde sinüs teoreminin tanımının yapıldığı ve astronomi ile ilgili konularda teoremin uygulanmasında gösterilmiştir. Trigonometrinin, Batı’da yaygınlaşmasını sağlıyan, aynı zamanda dacebiri geometriye uygulayanlarınönderlerindendir. Arapça ve Farsça’dan Latince’ye tercüme etmede üne kavuşan Gerard (1114-1185), Batlamyus’un ünlü eserini 1136 yılında Sabit bin Kurra’nın Arapça eserinden Latince’ye tercüme etmiştir. Bu Latince tercüme, 1515 yılında ikinci kez yayınlanmıştır. Sabit bin Kurra’nın matematik ve astronomiye ilşkin yapmış olduğu eserlerin sayısı 60 yakındır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/208-sabit-bin-kurra-821-901

El Harezmî ( 780 – 850 ) Türk kökenli Matematik ve Astronomi bilginidir. Cebir ve Astronomi bilimlerinde önemli eserler yazmıştır. Harizmi’nin Ahmed, Muhammed ve Hasan adlı üç çocuğu olup, hepsi de Matematik bilimi üzerinde ciddi çalışmalarıyla tanınır. Hive bölgesinde bir Türk şehri olan Harizm’den Bağdat’a gelerek zamanın alimlerinden ders aldı ve kendini yetiştirdi. Harizmi, zamanın Abbasi Halifesi Me’mun’dan yardım ve destek gördü. Bağdat’taki Saray Kütüphanesi’nin idaresi kendisine verildi. Matematik ve Astronomide araştırmalar yaptı. Doğu ve Batı ilim aleminde Cebir’e yaptığı katkılarla ün yapıp, tanınan Harizmi; bu sahada ilk eser sahibidir. Eserlerinde Avrupa’nın bilmediği “sıfır”ı kullanıp, cebir işlemlerini geometrik düşüncelerle temellendirdi. Harizmi, “Kitab’ül Muhtasar fi Hesab’il Cebri Mukabele” adlı eserinde, “cebir” kelimesini Matematiğe kazandırdı. Cebir konuları metodik ve sistematik olarak ilk defa ortaya koydu. Zamanın matematiğine yeni bir yön vermiştir. Latince’ye çevrilip, Avrupa’da yüzyıllarca faydalanılan, “Kitab’ül Muhtasar fi Hesab’il Cebri Mukabele” ‘nin Arapça aslıyla Batı dillerine tercümesi Avrupa ve Amerika’da yayınlandı. Eser; bir önsöz, beş bölüm ve bir de ek bölümden meydana geliyordu. Muhteva olarak; birinci ve ikinci dereceden denklemlerin çözüm şekilleri, bilinmeyenleri, çeşitli cebir hesaplamalarını misallerle açıkladıktan sonra; nazari ve tatbiki hesaplama şekilleri, zamanın hükümet işlerine ait hesapların yapılması, kanalların açılması, bina yapımı, esnaf ve tüccar için lüzumlu işaretleri kapsıyordu. İkinci önremli eseri: “Kitab-el Muhtasar fi hisaballindi” isimli kitabıdır. Arapça aslı mevcut olmayan, Cambridge Üniversitesi’nde bulunan ve “Algoritmi de numero indoram” adlı Latince kitaptır. Bugünkü “logaritma” terimi, Harizmi’nin bu eserinde Latice, “algazizmi” olarak geçtiği sanılmaktadır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/207-el-harezmi-ebu-abdullah-muhammed-bin-musa-el-harezmi-harizm-780-bagdat-850

D’Alembert (1717 – 1783) Jean Le Rond d’Alembert adı, Notre Dame de Paris yöresinde küçük bir kilisenin adı olan Saint-Jean-Le Rond’tan gelmektedir. Chevalier Destouches’in gayri meşru oğlu olan d’Alembert, annesi tarafından gizlice Saint-Jean-Le Rond kilisesinin basamaklarına bırakılmıştı. Çocuğu sabahın erken saatlerinde kilisenin basamakları üstünde mışıl mışıl uyurken, kiliseye gelen papaz buldu. Hava oldukça da karanlıktı. Sabahın soğuğu iliklerine kadar işlemişti. Kilise avlusunun kapısını açtı ve yavaş adımlarla merdivenlere doğru yaklaştı. Basamakların üzerinde karanlık bir şey gördü. Köpek veya yabani bir hayvan olabileceğini düşündü ve biraz da korktu. Biraz daha yaklaşınca karartının hareket etmediğini ve hayvan olmadığını anladı. Kafasından bazı düşünceler bir film şeridi gibi süratli bir biçimde geçti. Acaba bu ne olabilirdi? Merdivenlere doğru tırmandı ve karartıyı artık iyice seçebiliyordu. Örtünün bir ucunu kaldırdı. Bir de ne görsün, minicik bir yavrucak annesinin sütünü yeni emmiş gibi mışıl mışıl uyuyordu. Yüzünün açılmasıyla sabahın soğuğu ciğerlerine kadar girdi. Arka arkaya bu temiz havayı burnundan çekti ve bol bol oksijeni teneffüs etti. Soğuk onu biraz rahatsız etti. Hava da iyice aydınlanmıştı. Çocuğun yüzü iyice fark edilebiliyordu. Yavaşça kucağına aldı ve merdivenlerin basamaklarını dikkatlice çıktı. Cebinden çıkardığı anahtarla kapıyı açtı ve bir eliyle de bebeği uyandırmamak için tüm gayretlerini harcadı. Kendi odasına girdi. çocuğu masanın üzerine yatırdı. Kilisenin içi de soğuktu. Sobayı yaktı ve odayı ısıttı. Bu tatlı ve güzel bebek uyandığında saat 10’u geçiyordu. Belediye ilgilileri, çocuğu fakir bir camcının karısına verdiler. Bu hayırsever, fakir fakat sevgisi ve şefkati zengin olan kadın da bu küçücük ve kimsesiz yavruya kendi çocuğu gibi baktı ve büyük bir dikkatle onu büyüttü. Daha sonra annesinin ve babasının kim olduğu anlaşıldıysa da bu iyilik sever kadından çocuğu ne almaya ne de istemeye gelen oldu. Yalnız, Chevalier, o zamanın kanunlarına göre gayri meşru oğlunun eğitim ve öğretim parasını ödemeye mecbur edildi. Kilise de peşini bırakmıyordu. Bu olayı ve bu aileyi d’Alembert büyüyünceye kadar öğrenemedi. Kendi annesi ve babasından daha ileri sevgi ve şefkatle büyütüldü. Oldukça da sıhhatli ve gürbüzdü. D’Alembert’teki matematik dehası uyanmaya başlayınca, oğlunun oturduğu yeri ve evi bilen öz annesi onu memnuniyetle yanına alacağını ve bakacağını bildirdi. Küçük ve akıllı d’Alembert, “Sen benim üvey annemsin. Camcının karısı benim asıl annemdir” diyerek onun bu önerisini geri çeviriyordu. Onu dünyaya getiren öz annesi ve babası gibi, o da onları unuttu. Bir daha da adlarını andığı görülmedi. Onun annesi ve babası, o fakir camcı ve onun karısıydı. D’Alembert ünlü olduğu zaman bu ailesini unutmadı. Kendisine bakan, onların sevgileriyle büyüyen camcının ailesini kendi ailesi olarak kabul ettiğinden, fakir olan bu ailenin rahatlık içinde yaşamalarını sağladı. Bu aile yine kendi küçücük evlerinde kalmayı uygun buldular. D’Alembert’te manevi anne ve babası olan camcı ailesini öz annesi ve öz babası ilan etti. Yaşam süreci boyunca da onlarla övündü ve onlara baktı. D’Alembert artık bir saray matematikçisi ve ünlü biriydi. Gece ve gündüzlerin uzaması veya kısalması probleminin çözümünü tam olarak d’Alembert verdi. En önemli eseri, parçalı diferansiyel denklemler üzerinedir. Özellikle, titreşen tellere ait buluşu çok önemlidir. Serilerin yakınsaklığına ait d’Alembert ölçütü onundur. Kendi adıyla anılan çok sayıda teoremleri vardır. D’Alembert, genç dostu Lagrange’ı güç ve önemli problemleri çözmeye yöneltiyor, olanaklar ölçüsünde ona bir ağabey gibi davranıyordu. Beraber bir arada olduklarında sözlerle ve ayrı olduklarında da mektuplarla, mide rahatsızlıkları olan Lagrange’a önerilerde bulunuyordu. Mekanikte çok önemli buluşları olan Fransız matematikçisi d’Alembert’in, dalga denklemi ve bu problemin kendi adıyla bilinen çözümü ünlüdür. D’Alembert’i yaşatan en önemli buluşlarından biri de biraz önce adını andığımız d’Alembert ya da genel matematikte adı çok geçen bölüm ölçütüdür. Sonsuz terimli serilerin yakınsaklığı, yakınsaklık bölgesini ve yakınsaklık yarıçapını bulmak için bundan daha kullanışlı bir formül bulunamamıştır. Yine bu ölçütle, serilerin analitik bölgelerini kolayca bulabiliriz. D’alembert, genel matematiğin kurucularından biri olarak bilinir ve biri olarak kabul edilir.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/197-dalembert-1717-1783

Euclid (M.Ö. 325 – M.Ö. 265) Rönesans sonrası Avrupa’da, Kopernik’le başlayan, Kepler, Galileo ve Newton’la 17. yüzyılda doruğuna ulaşan bilimsel devrim, kökleri Helenistik döneme uzanan bir olaydır. O dönemin seçkin bilginlerinden Aristarkus, güneş-merkezli astronomi düşüncesinde Kopernik’i öncelemişti; Arşimet yaklaşık iki bin yıl sonra gelen Galileo’ya esin kaynağı olmuştu; Öklid çağlar boyu yalnız matematik dünyasının değil, matematikle yakından ilgilenen hemen herkesin gözünde özenilen, yetkin bir örnekti. Öklid, M.Ö. 300 sıralarında yazdığı 13 ciltlik yapıtıyla ünlüdür. Bu yapıt, geometriyi (dolayısıyla matematiği) ispat bağlamında aksiyomatik bir dizge olarak işleyen, ilk kapsamlı çalışmadır. 19. yüzyıl sonlarına gelinceye kadar alanında tek ders kitabı olarak akademik çevrelerde okunan, okutulan Elementler’in, kimi yetersizliklerine karşın, değerini bugün de sürdürdüğü söylenebilir . Egeli matematikçi Öklid’in kişisel yaşamı, aile çevresi, matematik dışı uğraş veya meraklarına ilişkin hemen hiçbir şey bilinmemektedir. Bilinen tek şey; Iskenderiye Kraliyet Enstitüsü’nde dönemin en saygın öğretmeni; alanında yüzyıllar boyu eşsiz kalan bir ders kitabının yazarı olmasıdır. Eğitimini Atina’da Platon’un ünlü akademisinde tamamladığı sanılmaktadır. O akademi ki giriş kapısında, ”Geometriyi bilmeyen hiç kimse bu kapıdan içeri alınmaz!” levhası asılıydı. Öklid’in bilimsel kişiliği, unutulmayan iki sözünde yansımaktadır: Dönemin kralı I. Ptolemy , okumada güçlük çektiği Elementler’in yazarına, “Geometriyi kestirmeden öğrenmenin yolu yok mu?” diye sorduğunda, Öklid “Özür dilerim, ama geometriye giden bir kral yolu yoktur” der. Bir gün dersini bitirdiğinde öğrencilerinden biri yaklaşır, ”Hocam, verdiğiniz ispatlar çok güzel; ama pratikte bunlar neye yarar?” diye sorduğunda, Öklid kapıda bekleyen kölesini çağırır, “Bu delikanlıya 5-10 kuruş ver, vaktinin boşa gitmediğini görsün!” demekle yetinir . Öklid haklı olarak “geometrinin babası” diye bilinir; ama geometri onunla başlamış değildir. Tarihçi Herodotus (M.Ö. 500) geometrinin başlangıcını, Nil vadisinde yıllık su taşmalarından sonra arazi sınırlarını belirlemekle görevli kadastrocuların çalışmalarında bulmuştu. Geometri “yer” ve “ölçme” anlamına gelen “geo” ve “metrein” sözcüklerinden oluşan bir terimdir. Mısır’ın yanı sıra Babil, Hint ve Çin gibi eski uygarlıklarda da gelişen geometri o dönemlerde büyük ölçüde, el yordamı, ölçme, analoji ve sezgiye dayanan bir yığın işlem ve bulgudan ibaret çalışmalardı. Üstelik ortaya konan bilgiler çoğunlukla kesin olmaktan uzak, tahmin çerçevesinde kalan sonuçlardı. Örneğin, Babilliler dairenin çemberini çapının üç katı olarak biliyorlardı. Bu öylesine yerleşik bir bilgiydi ki; pi’ nin değerinin 3 değil, 22/7 olarak ileri sürenlere, bir tür şarlatan gözüyle bakılıyordu. Mısırlılar bu konuda daha duyarlıydılar: M.Ö. I800 yıllarına ait Rhind papürüslerinde onların pi’yi yaklaşık 3.1604 olarak belirledikleri görülmektedir; ama Mısırlıların bile her zaman doğru sonuçlar ortaya koyduğu söylenemez. Nitekim, kesik kare piramidin oylumunu (hacmini) hesaplamada doğru formülü bulan Mısırlılar, dikdörtgen için doğru olan bir alan formülünün, tüm dörtgenler için geçerli olduğunu sanıyorlardı. Aritmetik ve cebir alanında Babilliler , Mısırlılardan daha ilerde idiler. Geometride de önemli buluşları vardı. Örneğin, “Pythagoras Teoremi” dediğimiz, bir dik açılı üçgende dik kenarlarla hipotenüs arasındaki bağıntıya ilişkin önerme “bir dik üçgenin dik kenar karelerinin toplamı, hipotenüsün karesine eşittir” buluşlarından biriydi. Ne var ki, doğru da olsa bu bilgiler ampirik nitelikteydi; mantıksal ispat aşamasına geçilmemişti henüz. Ege’ li Filazof Thales’in (M.Ö. 624-546), geometrik önermelerin dedüktif yöntemle ispatı gereğini ısrarla vurguladığı, bu yolda ilk adımları attığı bilinmektedir . Mısır gezisinde tanıştığı geometriyi, dağınıklıktan kurtarıp, tutarlı, sağlam bir temele oturtmak istiyordu. İspatladığı önermeler arasında . ikizkenar üçgenlerde taban açılarının eşitliği; kesişen iki doğrunun oluşturduğu karşıt açıların birbirine eşitliği vb. ilişkiler vardı. Klasik çağın “yedi Bilgesi” nden biri olan Thales’in açtığı bu yolda, Pythagoras ve onu izleyenlerin elinde, matematik büyük ilerlemeler kaydetti, sonuçta Elementler’de işlenildiği gibi, oldukça soyut mantıksal bir dizgeye ulaştı. Pythagoras, matematikçiliğinin yanı sıra, sayı mistisizmini içeren gizliliğe bağlı bir tarikatın önderiydi. Buna göre; sayısallık evrensel uyum ve düzenin asal niteliğiydi; ruhun yücelip tanrısal kata erişmesi ancak müzik ve matematikle olasıydı. Buluş ve ispatlarıyla matematiğe önemli katkılar yapan Pythagorasçılar , sonunda inançlarıyla ters düşen bir buluşla açmaza düştüler. Bu buluş, karenin kenarı ile köşegenin ölçüştürülemeyeceğine ilişkindi. kök 2 gibi, bayağı kesir şeklinde yazılamayan sayılar , onların gözünde gizli tutulması gereken bir skandaldı. Rasyonel olmayan sayılarla temsile elveren büyüklükler nasıl olabilirdi? (Pythagorasçıların tüm çabalarına karşın üstesinden gelemedikleri bu sıkıntıyı, daha sonra tanınmış bilgin Eudoxus oluşturduğu, irrasyonel büyüklükler için de geçerli olan, Orantılar Kuramı’yla giderir). Öklid, Pythagoras geleneğine bağlı bir ortamda yetişmişti. Platon gibi, onun için de önemli olan soyut düşünceler , düşünceler arasındaki mantıksal bağıntılardı. Duyumlarımızla içine düştüğümüz yanlışlıklardan, ancak matematiğin sağladığı evrensel ilkeler ve salt ussal yöntemlerle kurtulabilirdik. Kaleme aldığı Elementler, kendisini önceleyen Thales, Pythagoras, Eudoxus gibi, bilgin-matematikçilerin çalışmaları üstüne kurulmuştu. Geometri bir önermeler koleksiyonu olmaktan çıkmış, sıkı mantıksal çıkarım ve bağıntılara dayanan bir dizgeye dönüşmüştü. Artık önermelerin doğruluk değeri, gözlem veya ölçme verileriyle değil, ussal ölçütlerle denetlenmekteydi. Bu yaklaşımda pratik kaygılar ve uygulamalar arka plana itilmişti. Kuşkusuz bu, Öklid geometrisinin pratik problem çözümüne elvermediği demek değildi. Tam tersine, değişik mühendislik alanlarında pek çok problemin, bu geometrinin yöntemiyle çözümlendiği; ama Elementler’in, eğreti olarak değindiği bazı örnekler dışında, uygulamalara yer vermediği de bilinmektedir. Öklid’in pratik kaygılardan uzak olan bu tutumunun matematik dünyasındaki izleri, bugün de rastladığımız bir geleneğe dönüşmüştür. Gerçekten, özellikle seçkin matematikçilerin gözünde, matematik şu ya da bu işe yaradığı için değil, yalın gerçeğe yönelik, sanat gibi güzelliği ve değeri kendi içinde Soyut bir düşün uğraşı olduğu için önemlidir. Matematiğin tümüyle ussal bir etkinlik olduğu doğru değildir. Buluş bağlamında tüm diğer bilimler gibi matematik de, sınama-yanılma, tahmin, sezgi, içedoğuş türünden öğeler içermektedir. Yeni bir bağıntıyı sezinleme, değişik bir kavram veya yöntemi ortaya koyma, temelde mantıksal olmaktan çok psikolojik bir olaydır. Matematiğin ussallığı, doğrulama bağlamında belirgindir. Teoremlerin ispatı, büyük ölçüde kuralları belli, ussal bir işlemdir; ama şu sorulabilir: Öklid neden, geometrinin ölçme sonuçlarıyla doğrulanmış önermeleriyle yetinmemiş, bunları ispatlayarak, mantıksal bir dizgede toplama yoluna gitmiştir? Öklid’i bu girişiminde güdümleyen motiflerin ne olduğunu söylemeye olanak yoktur; ancak, Helenistik çağın düşün ortamı göz önüne alındığında, başlıca dört noktanın öngörüldüğü söylenebilir: 1) İşlenen konuda çoğu kez belirsiz kalan anlam ve ilişkilere açıklık getirmek; 2) İspatta başvurulan öncülleri (varsayım, aksiyom veya postulatları) ve çıkarım kurallarını belirtik kılmak; 3) Ulaşılan sonuçların doğruluğuna mantıksal geçerlik kazandırmak (Başka bir deyişle, teoremlerin öncüllere görecel zorunluluğunu, yani öncülleri doğru kabul ettiğimizde teoremi yanlış sayamayacağımızı göstermek); 4) Geometriyi, ampirik genellemeler düzeyini aşan soyut-simgesel bir dizge düzeyine çıkarmak (Bir örnekle açıklayalım: Mısırlılar ile Babilliler kenarları 3, 4, 5 birim uzunluğunda olan bir üçgenin, dik üçgen olduğunu deneysel olarak biliyorlardı; ama bu ilişkinin 3, 4, 5 uzunluklarına özgü olmadığını, başka uzunluklar için de geçerli olabileceğini gösteren veriler ortaya çıkıncaya dek kestirmeleri güçtü; buna ihtiyaçları da yoktu. Öyle kuramsal bir açılma için pratik kaygılar ötesinde, salt entellektüel motifli bir arayış içinde olmak gerekir. Nitekim, Egeli bilginler somut örnekler üzerinde ölçmeye dayanan belirlemeler yerine, bilinen ve bilinmeyen tüm örnekler için geçerli soyut genellemeler arayışındaydılar. Onlar, kenar uzunluklan a, b, c diye belirlenen üçgeni ele almakta, üçgenin ancak a2+b2=c2 eşitliği gerçekleştiğinde dik üçgen olabileceği genellemesine gitmektedirler). Öklid oluşturduğu dizgede birtakım tanımların yanı sıra, beşi “aksiyom” dediği genel ilkeden, beşi de “postulat” dediği geometriye özgü ilkeden oluşan, on öncüle yer vermiştir (Öncüller, teoremlerin tersine ispatlanmaksızın doğru sayılan önermelerdir). Dizge tüm yetkin görünümüne karşın, aslında çeşitli yönlerden birtakım yetersizlikler içermekteydi. Bir kez verilen tanımların bir bölümü (özellikle, “nokta”, “doğru”, vb. ilkel terimlere ilişkin tanımlar) gereksizdi. Sonra daha önemlisi, belirlenen öncüller dışında bazı varsayımların, belki de farkında olmaksızın kullanılmış olması, dizgenin tutarlılığı açısından önemli bir kusurdu. Ne var ki, matematiksel yöntemin oluşma içinde olduğu başlangıç döneminde, bir bakıma kaçınılmaz olan bu tür yetersizlikler, giderilemeyecek şeyler değildi. Nitekim, l8. yüzyılda başlayan eleştirel çalışmaların dizgeye daha açık ve tutarlı bir bütünlük sağladığı söylenebilir. Üstelik dizgenin irdelenmesi, beklenmedik bir gelişmeye de yol açmıştır: Öncüllerde bazı değişikliklerle yeni geometrilerin ortaya konması. “Öklid-dışı” diye bilinen bu geometriler, sağduyumuza aykırı da düşseler, kendi içinde tutarlı birer dizgedir. Öklid geometrisi, artık var olan tek geometri değildir. Öyle de olsa, Öklid’in düşünce tarihinde tuttuğu yerin değiştiği söylenemez. Çağımızın seçkin filozofu Bertrand Russell’ın şu sözlerinde Öklid’in özlü bir değerlendirmesini bulmaktayız: ‘”Elementler’e bugüne değin yazılmış en büyük kitap gözüyle bakılsa yeridir. Bu kitap gerçekten Grek zekasının en yetkin anıtlarından biridir. Kitabın Greklere özgü kimi yetersizlikleri yok değildir, kuşkusuz: dayandığı yöntem salt dedüktif niteliktedir; üstelik, öncüllerini oluşturan varsayımları yoklama olanağı yoktur. Bunlar kuşku götürmez apaçık doğrular olarak konmuştur. Oysa, 19.yüzyılda ortaya çıkan Öklid-dışı geometriler, bunların hiç değilse bir bölümünün yanlış olabileceğini, bunun da ancak gözleme başvurularak belirlenebileceğini göstermiştir.” Gene Genel Rölativite Kuramı’nda Öklid geometrisini değil, Riemann geometrisini kullanan Einstein’ın, Elementler’e ilişkin yargısı son derece çarpıcıdır: “Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline boşuna kapılınasın!”

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/194-euclid-mo-325-mo-265

Galois (1811 – 1832) Fransız matematikçisi Galois, 1811-1832 yılları arasında yaşadı. Abel’in çağdaşı olan bu matematikçinin doğum ve ölüm tarihlerine bakarsanız 21 yıllık bir ömür sürdüğünü görür ve bu işte bir yanlışlık olduğunu düşünebilirsiniz. Hiçbir yanlışlık yok. Galois’nın hayatı Brezilya dizilerine konu olmaya aday şanssızlıklarla sürüp gitmiş ve 21 yılda tükenmiştir. Yakınları kendisinden söz ederken, annesinin erkek huylu, cömert, şerefli, açık bir şekilde alaycılığa kaçan ve bazen de çelişkilerde karar kılan bir kadın gibi anlatılıyordu. Anne, 1872 yılında seksen dört yaşında öldü. Aklını ve hafızasını ölünceye kadar korudu. O da, kocası gibi zulme, haksızlığa karşı bir öfke, kızma ve hınç besliyordu. Babası gibi, annesinin bu duyguları Galois da da görülür. Bu duygu ve düşüncelerden Galois da kurtulamamıştır. Onun kısa yaşamında bu duyguların etkisi çok büyük olmuştur. Abel yoksulluktan ölmüştü. Galois ise, başkalarının budalalığından ölmüştür. İlim tarihi, en kaba budalalığın dehaya karşı zaferine, Galois’nın çok kısa süren hayatı kadar kusursuz ve eksiksiz bir örnek vermemiştir. Burada bir noktaya dikkat etmek gerekir. Galois bir melek değildi. Çok taşkındı ve derisine sığmıyordu. Bu onun yaramazlığından değil de, zekasının kafasının içine sığmamasındandı. O parlak yeteneği, aleyhine birleşmiş koyu bir budalalıkla boğulup gitti. Galois’nın her davranışı, taşan zekası ve onun dahi kafasının istediği yönde yönlendirilmediğinden ileri gelmiştir. Galois’nın ne anne ve ne de baba tarafından matematiğe karşı en küçük bir yetenek görülmemiştir. Galois’nın matematik dehası, birden bire delikanlılık çağına doğru çıkmıştır. Galois, merhametli, acıyan, seven ve hatta ağır başlı bir çocuk olmakla beraber, babası şerefine düzenlenen toplantılarda ortamın neşesine katılmasını bilir ve konukları eğlendirmek amacıyla şiirler ve karşılıklı konuşma yazıları yazardı. Fakat, beceriksiz, yeteneksiz ve anlayışsız öğretmenlerinin rahatsız etme, canını sıkma ve tedirgin etmeleri, onların sersem ve pek akılsız davranışları yüzünden Galois’nın bu atılımları da çok sürmedi. Onu da hemen körelttiler. Galois, 1823 yılında on iki yaşında Paris’teki Louis le Grand Lisesine girdi. Lise, kapıları sürgülü ve pencereleri demirli bir hapishaneden farksızdı. 1823 Fransa’sı daha Fransız devrimini unutmamıştı. Yöneticilerin, insanların ve bazı güçlerin tuzakları ve karşı tuzakları, ayaklanmalar ve ihtilal söylentileri sık sık görülen olaylardı. Olaylar tam oturmamış ve huzursuzluklar devam ediyordu. Toplumun bu huzursuzlukları Galois’nın lisesine de yansıyordu. Cizvitlerin yönetimi yeniden ele almasını sağlamak amacıyla lisenin müdürünün planlar hazırlamış olmasından kuşkulanan öğrenciler, kilisede bile okumayı, kabul etmeyerek ayaklandılar. Müdür, öğrenci ailelerine bile haber vermeden suçlu diye kuşkulandığı öğrencileri okuldan kovdu. Galois, bunların içinde değildi. Bulunsa herhalde Galois’nın geleceği için daha hayırlı olurdu. Çünkü, Galois, o güne kadar kanunsuz ve keyfi yönetimin, yalnız kelimesini biliyordu. Artık O, harekete geçmiş, kendisini olayların içinde bulmuştu. Ölünceye kadar da bu iz onda kalacaktır. Galois, annesinin ona verdiği temel eğitim ve öğretiminin yardımıyla öğrenimini çok iyi bir biçimde yürütüyordu. Böylece, öğrenimine çok iyi başladı. Sınıftaki tüm birincilikleri topladı. Ertesi yıl 1824 tarihinde Galois’nın hayatında başka bir davranış daha görüldü. Edebiyata ve klasiklere önce uysallıkla çalıştığı halde, şimdi onlar canını sıkmaya, buna karşın matematik dehası uyanmaya başladı. Öğretmenleri sınıfta kalıp bir yıl daha okumasını istediler. Babası karşı koydu. Zavallı Galois, bitmek tükenmek bilmeyen edebiyat, Yunanca ve Latince derslerine yeniden başladı. Orta derecede ve dikkatsiz bir öğrenci olarak tanındı. Son söz yine öğretmenlerinin oldu ve Galois sınıfta kaldı. Ne yazık ki, bu dahi çocuk, zekasının kabul etmediği eski ve onun için anlamsız şeyleri tekrarlamak zorunda kaldı. Yorulduğu ve zevkini kaybettiği için derslerine karşı hiç bir gayret, çaba ve ilgi göstermiyordu. O zaman diğer derslere göre matematiğe çok önem verilmezdi. Matematik dersi bazen yapılır, bazen de hiç yapılmazdı. Galios, kendisinin bir matematikçi olduğunu nereden bilebilirdi? Galois, düzenli matematik derslerine bu derin sıkıntı yılında başladı. Bu zaman, Legendre’nin güzel geometrisinin moda olduğu bir sürece rastlar. İyi bir öğrenciler bile Legendre’nin bu geometrisini tümüyle anlayabilmek için en az iki yıl uğraşmaları gerektiğine inanıyorlardı. Galois, Legendre’nin geometrisini bir korsan kitabı okur gibi, baştan sona kadar bir nefeste okuyarak bitirdi ve bu kitaba hayran kaldı. Bu kitap, bir işçinin elinden çıkmış bir el kitabı değil de, bir usta elinden çıkmış bir şaheserdi. Bir kere okunması, bir çocuğa en açık biçimde geometriyi öğrenmesini sağlıyordu. Galois’nın cebire karşı tepkisi bambaşka oldu. Cebirden nefret etti. Onun bu tepkisi, onun ruh yapısını bilen için haklı bir gerekçeydi. Çünkü, Galois’yı gayrete ve çalışmaya getirecek Legendre düzeyinde usta bir cebirci yoktu. Cebir, okul kitaplarından başka bir şey değildi. Bu, Galois’ya cebir bilgisinin verilmeyişinden kaynaklanıyordu. Büyük bir matematikçiyi eserleriyle tanımasını öğrendikten sonra, kendi kendine bir yol aramak görevini üstüne aldı. Cebir öğrenmek için çağın büyük matematikçisi Lagrange’a başvurdu. Sonra Abel’i okudu. Bu sırada on dört on beş yaşındaki bir çocuğun olgun matematikçilere özgü yazılmış cebir analizinin şaheserlerini, denklemlerin sayısal çözümlerine ait çalışmaları, analitik fonksiyonlar kuramını ve fonksiyonların diferansiyel hesaplarını birer birer okuyarak yutuyordu. Artık okul ödevleri onun için küçük şeylerdi. Genç dahiye gündelik dersler adi bir iş gibi geliyordu. Gerçek matematik için bu dersler faydasız ve hiçte gerek yoktu. Kendisinde matematik yeteneğinin olduğunu fark edince, cebirsel analizin büyüklerinin yaptıklarını ve kendi düşündüklerini karşılaştırdı ve ileri atıldı. Annesi bile bunun farkında değildi. Fakat oğlunu biraz garip buluyordu. Lisede öğretmenleri ve arkadaşları üzerinde korku ve öfkeyle karışık garip bir duygu bırakıyordu. Öğretmenleri sabırlı ve iyi insanlardı. Fakat, oldukça dar görüşlü kimselerdi. Yıl başında “Çok uslu ve tatlı, iyi özellikleri bol” bir öğrenci diye sözü edildi. Fakat, Galois’da garip bir halin olduğunu da ekliyorlardı. Bu olay doğrudur. Çünkü, Galois sıradan bir zekaya sahip bir öğrenci değildi. İçine sığacak türde biri olması olanaksızdı. Galois için, Hiçte fena çocuk olmadığı, fakat “orijinal ve acayibin biri, her zaman muhakemeci, mantıkçı” olduğu sözleri de yine o eski kayıtlarda vardır. Arkadaşlarına takılmaktan zevk aldığı da ekleniyordu. Yıl sonundaki kayıtlarda yine, “Garip hallerle arkadaşlarını darılttığı ve karakteri içinde kapanmış bir şeyi olduğu” yazılıyordu. Daha ileri, öğretmenleri onu, “Son derece hırslı ve orijinal bir davranış takınmak” la suçluyorlardı. Buna karşın, bazı öğretmenleri Galois’nın iyi bir öğrenci olduğunu ve özellikle matematikte çok başarılı olduğunu kabul etmişlerdi. Yalnız bir kişi, Galois’nın matematikte olduğu kadar, diğer derslerinde de dikkate değer bir öğrenci olduğunu söylüyordu. Bu iyi niyet karşısında kalan Galois, edebiyat derslerinde de dikkatli olup şansını deneyeceğini söylediyse de, içindeki matematik aşkı hürriyetine kavuşmak için tutuşuyordu. Galois, on altı yaşında, çok önemli buluşlara hazırlandığı bir sırada matematik öğretmeni Vernier, sanki tavuğun yeni çıkardığı yavrusunu kapacak olan kartaldan korur gibi Galois üzerinde titriyordu. Vernier, Galois’nın yöntemli çalışmasını istiyor, fakat öğrencisi bu öğütleri dinlemiyordu. Galois, Ecole Polytechnique’in sınavlarına girdi. Sivil ve asker mühendislere dünyanın en iyi matematik ve ilim bilgisi vermek amacıyla ihtilal yasalarına göre Monge tarafından kurulmuş olan bu büyük okul, Galois’yı kendisine fazlasıyla çekiyordu. Bu okulda önce matematik hırsını tatmin edecek, burada matematik alanında kendini gösterecekti. Daha sonra, hürriyet aşkının doyacağını umuyordu. Çünkü, burada büyük kimseler, enerjik ve cesaretli Polytechnique’liler bulunuyordu. Bu okuldan çok şey bekliyordu. Galois, Polytechnique’in sınavına girdi ve kazanamadı. Bu başarısızlığa sersemce bir haksızlığın neden olduğunu bilen sadece kendisi değildi. Hatta, arkadaşları bile bu başarısızlıkla şaşkına döndüler. Zaten Galois’nın matematik dehasını bilen ve onu takdir eden arkadaşlarıydı. Tüm suçu sınav jürisine yüklediler. O sırada bu okula giren adaylarla ilgili bir dergi çıkaran Terquem, okuyucularına, Galois’nın başarısızlığıyla ilgili tartışmanın henüz kapanmadığını hatırlattı. Bu başarısızlığı ve başka bir yerde, sınav jürisinin akıl erdirilemeyen kararlarını yorumlayan Terquem şunları yazıyordu; “Yüksek zekalı bir aday daha düşük zekalı sınav jürileri tarafından döndürülmüştür. Ben bir barbarım. Çünkü onlar beni anlamıyorlar “. Galois’ya gelince, başarısızlığı onun için öldürücü bir darbe olmuştu. Kendi içine kapandı. Bu sınavın acısını hiç bir zaman unutamadı. 1828 yılında Galois on yedi yaşındaydı. Bu, onun hayatında büyük bir yıl oldu. İlk kez onun dehasını anlayan değerli bir matematik öğretmeniydi. Adından söz edeceğimiz kişi, Louis Paul Emile Richard (1795-1849), Louis le Grand öğretmeniydi. Richard, dürüst bir eğitimciydi. Kendi öz çıkarları için her şeyi uygun gören bu adam, öğrencisinin geleceği söz konusu olunca hiçbir özveriyi esirgemeyen değerli biriydi. Bu sırada bazı matematikçiler de vardı. Öğretmenlik hevesi içinde, eserlerini yayınlaması için onu sıkıştıran dostlarının öğütlerine karşın, kendini tümüyle unuttuğu da olurdu. Richard, ayağına gelen kısmetin ne olduğunu ilk bakışta anladı. Karşısındaki çocuk, Fransız’ların Abel’iydi. Galois’nın bazı zor problemlere karşı verdiği orijinal çözümleri sınıfta açıklamaktan gurur duyuyor ve bu insan üstü öğrencinin Polytechnique’e sınavsız kabul edilmesini gereken her yerde söylüyordu. Richard, Galois’ ya birincilik ödülünü verdi ve raporuna şunları yazdı. “Bu öğrenci, arkadaşlarına göre açık bir üstünlük göstermektedir. Matematiğin yalnız en zor taraflarına çalışmaktadır.” Bu söz, gerçeğin tam kendisiydi. Galois, on yedi yaşında, denklemler kuramında her zaman hatırlanacak olan ve sonuçları bir yüzyıldan fazla bir zaman sonra bile tüketilemeyen keşifler yapıyordu. Galois, 1 Mart 1829 günü, sürekli kesirlere ait ilk çalışmasını yayınladı. Bu çalışma, onun ileride başaracağı büyük işler hakkında bir fikir vermemekle beraber, hiç olmazsa, basit ve sıradan bir öğrenci olmadığını ve yaratıcı bir matematikçi olduğunu göstermeye yeterdi. O sırada, Cauchy Fransız matematikçilerinin başında geliyordu. Pek çok yayını ve keşifleri olan Cauchy, yayın sayısı bakımından Euler ve Cayley’den sonra geliyordu. Cauchy, eserlerini genellikle çabuk ve doğru yazardı. Bazen unutkanlıkları da oluyordu. Fakat, bu kez yaptığı unutkanlığı Abel ve Galois’nın felaketi oldu. Onların canına kıydı. Abel için Cauchy kısmen suçlu kabul edilebilir. Fakat, Galois için affedilmez bir unutkanlığın tek sorumlusudur. Galois, on yedi yaşına kadar yaptığı buluşların önemlilerini, ileride Akademiye vermeyi düşündüğü bir çalışma için saklamıştı. Cauchy, bu çalışmayı Akademiye sunacağını söz verdiği halde, sonra bu sözü unutmuş ve daha kötüsü bu yazıyı kaybetmişti. Galois, Cauchy’nin bu söz verişini kendisinden bir daha duymadı. Cauchy, aynı davranışı Abel’e de göstermişti. Cauchy’nin bu tür davranışının kasıtlı olup olmadığını bilemiyoruz. Fakat, matematik tarihi için sadece onu suçlayabiliriz. Çünkü, Cauchy’nin bu davranışı, genç Galois için bir hayal kırıklığı oldu. Akademi üyelerine karşı beslediği hırçın nefreti tutuşturan ve içinde yaşamaya zorunlu tutulduğu budala topluma karşı vahşi bir kin şeklinde soysuzlaşmaya kadar vardıran bir dizi benzer felaketlerin ilki oldu. Bu kadar açıkça dehası görülen genci, öğretmenleri anlamıyor, onun huzurla keşiflerini hazırlaması için bir ortam hazırlamadıkları gibi, huzurunu bozuyorlar ve boşuna verilen ödevlerle oyalayarak çileden çıkarıyorlardı. Uzun ve sıkıcı tektirler, ardı arkası kesilmeyen cezalarla da onu isyana ve karşı gelmelere yöneltiyordu. O yine bunlara bir yerde katlanıyordu. Kendisini büyük matematikçi olmaya yöneltiyor ve bu amaçla çalışıyordu. Galois, on sekiz yaşında genç bir delikanlıyken, ikinci darbe kafasına indi. Galois, ikinci kez Polytechnique’e başvurdu. Sonuç yine beklendiği gibi çıktı. Galois sınavı kazanamadı. Şansını son bir Kez daha denemişti. Okulun kapısı artık kendisine sürekli kapanıyordu. Galois’yı sınav yapan kimseler gerçekten de ondan çok daha geride kimselerdi. Galois’nın bu sınavı dillere destan oldu. Her yerde bu sınavın sonucu konuşuluyor ve bu sınavdan söz ediliyordu. İşin duygusal yanı böyleydi. Fakat, olanlar zavallı Galois’ya olmuştu. Galois’nın en büyük özelliği, hemen hemen tüm hesapları ve hesaplamaları zihninden yapar ve sonucu söylerdi. Kalem, kağıt, tebeşir ve karatahta onun canını sıkıyordu. Keskin bir zekası ve düşünme yeteneği vardı. Fakat ne yazık ki, bu kez silgi ve tebeşiri özel bir amaçla kullandı. Sözlü sınavda jüri üyelerinden biri, matematik bir güçlük üzerinde onunla tartışmaya girişmek istedi. Jüri üyesi haksızdı. Fakat, direndi. Yetkili yerde de oydu. Okula kabul edilmemek düşüncesinin verdiği bir öfke ve ümitsizlik bunalımıyla ve sıkıntıyla silgiyi jüri üyesinin kafasına fırlattı ve … rezalet koptu. Yine olan zavallı Galois’ya oldu. Galois’nın babasının acı ölümü ona son darbeyi indirdi. Bourg La Reine’nin belediye başkanı olması dolayısıyla, halkı papazlara karşı koruyordu. İhtiyar Galois, bu yüzden papazların çevirdiği dalaverelere hedef oldu. 1827 yılının gürültülü seçimlerinden sonra, bir papaz ihtiyar belediye başkanının şahsına karşı haysiyet kırıcı bir savaş açtı. İhtiyar adamın şiire karşı olan yeteneğini kötüye kullanarak, belediye başkanının imzasıyla Galois ailesinin birisine hitaben kirli ve pis mısralar bulunduran bir şiir yazdı ve bunları halk arasında dolaştırdı. Tam anlamıyla namuslu bir adam olan Galois’nın babası kendine eziyet etmek merakına tutuldu. Bir gün, karısının evde bulunmadığı bir sırada Paris’ten kaçtı. Oğlunun öğrenimini gördüğü lisenin iki adım ötesinde bir apartmanda intihar etti. Cenaze töreninde bazı karışıklıklar çıktı. Ona kızan bazı vatandaşlar cenazeye taş attılar. Bir papaz alnından yaralandı. Galois, babasının tabutunun görülmemiş bir patırdı içinde mezara indirilişine tanık oldu. O zamandan beri, her yerde nefret ettiği haksızlığın varlığından şüphelenerek, hiç bir zaman hiçbir yerde iyiliği göremedi. Galois, Polyteohnique’teki ikinci sınavındaki başarısızlığından sonra, öğretmen olmak için Ecole Normale döndü. Yıl sonu sınavlarına kendi kendine çalışarak hazırlandı. Sınav jürilerinin kayıtları dikkate değerdir. Matematik ve fizik sınavlarından pekiyi notunu aldı. Son sözlü sınavında hakkında yazılmış şöyle bir not vardır; “Bu öğrenci fikir ve söylemek istediklerini her zaman açık olarak ifade edememektedir. Fakat zekidir. Dikkate değer araştırıcı bir zekası vardır.” Edebiyat dersinde en kötü yanıt veren öğrenci diye bir kayıt vardır. Galois, 1830 yılı şubatında on dokuz yaşında kesin olarak üniversiteye kabul edildi. Çalışmak için bir köşeye çekildi ve çalışmalarıyla kendisini öğretmenlerine gösterdi. O yıl yeni konular üzerinde üç tane çalışma yaptı. Bu çalışmaları, cebirsel denklemler kuramı üzerinde büyük bir ilerlemeydi. Bu çalışmalarında, onun büyük kuramının bazı izleri görülür. Bu buluşlarını ve başka sonuçlarını da birleştirerek, İlimler Akademisine sundu. Bu eser, ancak çağın ileri gelen matematikçilerinin izleyip anlayabileceği düzeydeydi. En yetkili kimselerin fikirlerine göre, bu çalışma ödülü kazanacak tek eserdi. Galois’nın bu yazısı Akademinin katipliğine geldi. Katip yazıyı incelemek üzere evine götürdü. Fakat, yazıyı okumadan öldü. Katibin kağıtları düzenlenirken Galois’nın bu çalışmasına rastlanılamadı. Galois da bir daha bu yazıdan söz edildiğini duymadı. Galois’yı avutacak başka bir söz daha yoktu. Koca deha, kötü bir düzen, anlayışsız insanlar, Cauchy’nin önem vermemesi ve tekrar eden kötü sonuçlar içinde yok olup gitmeyle karşı karşıyaydı. Bu olaylar, Galois’nın çökmüş ve kokmuş düzene karşı nefretini arttırıyordu. İlk ihtilal gösterileri Galois’yı sevinç içinde bıraktı. Arkadaşlarını bu olaylara sokmak istediyse de, onlar çekimser kaldılar. Deneyimli müdür, öğrencilerden dışarı çıkmayacaklarına şerefleri üzerine söz aldı. Galois söz vermeyi kabul etmedi. Müdür, Galois’ya ertesi güne kadar beklemesini rica etti. Müdürün davranışı incelik ve sağduyudan uzak olduğunu kısa bir konuşmasıyla kanıtladı. Galois, öfkelenerek gece kaçmaya çalıştı. Duvar oldukça yüksekti. 1830 yılının son ayları oldukça karışık geçti. Galois, harekete geçmek için arkadaşlarına mektup yazdı. Arkadaşları Galois’yı desteklemediler. Bunun üzerine Galois da okuldan kovuldu. Galois, parasız kaldığı için haftalık özel yüksek cebir dersleri vermek için ilan verdiyse de öğrenci bulamadı. Bu nedenle bir süre matematiği bıraktı. Halkın Dostları adı altında kurulan koruma kıtasının topçu kısmına gönüllü olarak girdi. Son bir ümitle ve Poisson’un önerisi üzerine, bugün Galois kuramı adı ile bilinen ve anılan ünlü çalışmasını İlimler Akademisine yolladı. Poisson raportördü. Ona göre çalışması anlaşılacak gibi değildi. Bu çalışmayı anlayabilmek için ne kadar zaman harcadığını da söylemiyordu. Gerçekten, Galois’nın kuramının anlaşılabilmesi için çok ileri düzeyde cebir bilgisi gerekmektedir. Bugün bu gerçek yine aynı düzeyini korumaktadır. O zaman, Galois’ nın yaptığı bu çalışmayı anlayan çıkmamıştı. Galois artık kendini ihtilalci politikaya verdi. 9 Mayıs 1831 gecesi, iki yüz kadar cumhuriyetçi, Kralın, Galois’ nın gönüllü olarak girdiği topçu kıtasının dağıtılması için imzaladığı bildiriye karşı koymak için bir ziyafette toplandılar. İhtilalci ve tahrik edici bir hava esiyordu. Galois, bir elinde kadeh ve bir elinde çakı ile ayağa kalktı ve kadehini Kral Louis Philippe’e diye kaldırdı. Bu hareketi yanlış anlamlara çeken arkadaşları onu ıslığa tuttular. Çakıyı da görünce, çakıyı Kralın hayatına karşı bir tehdit anlamına çektiler ve bağırarak alkışladılar. Galois, o anın kahramanıydı. Alkışlar kesilmiyordu. Topçular yürüyüş yapmak için dışarı çıktılar. Ertesi gün, Galois evinden alınarak tutuklandı. Sainte Pelagie’deki hapishaneye kapatıldı. Galois’nın yakın taraftarları usta ve kurnaz bir avukat buldular. Bu avukat, sanığın aslında Louis Philippe’e, eğer “ihanet ederse” dediğini ispat etmeye çalıştı. Çakıya gelince, onu da açıklamada güçlük yoktu. Çünkü, Galois o sırada yediği pilicini kesmekle meşguldü. Yanında bulunanlar da, ıslıklara boğulan cümlenin sonunu işittikleri üzerine yemin ettiler. Galois bunu kabul etmediyse de, aile sahibi ve namuslu bir adam olan yargıç, sanığa, bu davranışı ile durumu düzeltemeyeceğini söyledi ve onu susturdu. Savunma çok ince hazırlanmıştı. Mahkeme heyeti de sanığın gençliğine acıdı ve on dakika aradan sonra Galois’nın suç işlemediğine karar verdi. Galois, hürriyetini uzun zaman yine koruyamadı. Bir ay geçmeden 14 Temmuz 1831 günü bir tedbir olarak tutuklandı. Çünkü bu sırada cumhuriyetçiler bir gösteri yapmaya hazırlanıyordu. Hükümet bu hareketi büyüterek tebliğ halinde yayınlıyordu. Galois’nın ihtilal yapmasına engel olmuşlardı. Polisin onu yargılaması için bir gerekçe bulması güçtü. Tutuklandığında tepeden tırnağa kadar silahlıydı ama, polise hiç bir direnme göstermemişti. İki aylık bir bekleyişten sonra, bir gerekçe bulundu. Dağıtılmış topçu kıtasının resmi üniformasını taşıdığı için yargılandı. Bir arkadaşı üç ay ve kendisi de altı ay hapis cezası giydi. 29 Nisan 1832 gününe kadar hapishanede kaldı. Kız kardeşi, ağabeyinin geçirdiği bunca güneşsiz günden sonra sanki elli yıl daha çöktüğünü söylerdi. O zamanlar hapishanelerde hafif bir disiplin vardı. Tutuklular ya avluda dolaşırlar ya da kantinde içerlerdi. Asık yüzlü ve daima düşünen Galois, içicilerin alayı ile karşı karşıya geldi. Bir tahrik sonucu bir şişe rakıyı bir solukta içti. İyi bir dostu ona ayılıncaya kadar baktı. Ne yaptığının farkına varınca da utandı. Galois bu hapishaneden de çıktı. 1832 yılında kolera salgını baş gösterdi. Galois’yı koleradan korunması gerekçesiyle 16 Mayıs 1832 günü hastaneye kapattılar. Sanki, Louis Philippe’in hayatı ile oynamış olan bu önemli siyasi kolera salgınına karşı bırakılmayacak kadar kıymetliydi. Hastaneye kapatılmıştı ama, dışarıdan gelenlerle görüşmek olanağı oldukça fazlaydı. Böylece, hayatında tek bir aşk olayı da geçirmiş oldu. Her şeyde olduğu gibi, bunda da bir felaketle karşılaştı. Aşağılık oynak bir kadın aklını çeldi. Sonunda Galois, aşktan, kadından ve kendinden iğrendi. Ona bağlı dostu Auguste Chevalier’ye şunları yazıyordu. “Dokunaklı cümlelerle dolu mektubun bana biraz rahatlık getirdi. Fakat geçirdiğim bu kadar şiddetli heyecanların izini nasıl yok etmeli? … Her şeyde hayal kırıklığına uğradım. Hatta aşkta, şan ve şerefte bile …” Mektup 25 Mayıs 1832 tarihliydi. Dört gün sonra Galois serbest bırakıldı. Dinlenmek ve biraz düşünmek için bir yazlığa gitmeye karar verdi. Galois’nın 29 Mayıs 1832 günü başından geçen bir olay hakkında tam kesin bir bilgi sahibi değiliz. Bu olay hakkında iki mektubunda yazılanlar gerçek diye kabul edilen şeyleri akla getirmektedir. Galois, serbest bırakıldıktan sonra, siyasi düşmanlarıyla çekişmeye girişti. O zaman vatan severler düello (silahlı kavga) etmeye hevesliydiler. Zavallı Galois, bir şeref meselesi veya bir aşağılık kadın yüzünden düello etmek zorunda kaldı. 30 Mayıs 1832 günü şafak sökerken, Galois hasmıyla şeref meydanında karşılaştı. Düello tabancayla yirmi beş adım uzaklıktan yapılacaktı. Galois karnından vurularak düştü. Kör şans yine burada da onu buldu. Yörede doktor yoktu. Onu düştüğü yerde bıraktılar. Sabah saat dokuz sıralarında oradan geçen bir köylü tarafından Cochin hastanesine götürüldü. Galois öleceğini anladı. Karnındaki karın zarı iltihaplandı. Bu peritonit meydana çıkmazdan önce henüz aklı başındayken papazın son hizmetlerini kabul etmedi. Acaba babasının cenaze törenini mi hatırlamıştı? Aileden tek haberdar edilen küçük kız kardeşi göz yaşları içinde koşarak yetişti. Galois, tüm kuvvetini toplayarak onu teselli etti. Galois, 31 Mayıs 1832 günü yirmi bir yaşında, sabahın erken saatinde öldü. Güneydeki mezarlığın fakirlerin gömüldüğü çukura gömüldü. Bugün, Evariste Galois’dan hiç bir işaret ve hiç bir kırık taş bile kalmamıştır. Onun kalan ve ölmez tek anıtı, hepsi altmış sayfa tutan kendi el yazması olan Galois kuramıdır. Galois 28 Mayıs 1832 tarihli, “Tüm cumhuriyetçilere” başlıklı mektubunda şunları yazıyor: “Ülkem uğruna ölmek olanağını bulamadığım için bana gücenmemelerini dostlarımdan rica ediyorum. Alçak bir aşiftenin ve bunun aldattığı iki kişinin kurbanı olarak gidiyorum. Hayatım sefil bir dedikodu içinde tükenecek… Gerçeği soğuk kanlılıkla dinleyecek durumda bulunmayanlara bu uğursuz gerçeği söylediğime pişmanım. Fakat, ne de olsa doğruyu söyledim. Mezara, yalanlarla lekelenmemiş bir vicdan, vatansever kanın temiz vicdanını götürüyorum. Allahaısmarladık! Halkın iyiliği için ne kadar yaşamayı isterdim… Beni öldürenleri affediyorum. Çünkü, iyi niyetli insanlardı.” Galois, adı belirtilmeyen dostlara yazdığı başka bir mektupta şöyle diyor: “İki vatansever beni düelloya davet etti. Bunu reddetmek benim için olanaksızdı. Ne sana, ne ona haber vermediğim için özür dilerim. Çünkü, rakiplerim hiç bir vatansevere haber vermemem için benden şerefim üzerine söz istemişlerdi. Göreviniz çok basittir. İstemeyerek çarpıştığımı, yani her uzlaşma çaresine başvurduktan sonra çarpışmaya zorunlu olduğumu ispat ediniz. Yalan söylemek, hatta bu kadar önemsiz bir şey için yalan söylemek hiç elimden gelir mi, söylersiniz. Kaderim, vatanın adımı öğrenmesi için bana yaşamayı nasip etmediğinden hatıramı koruyunuz. Dostunuz olarak ölüyorum.” E. Galois Galois’nın yazdığı son sözler işte bunlardır. Öleceğini anlayan Galois bu gece son arzularını, vasiyetnamesini, ateşler içinde kağıda yazmakla geçirdi. Daha önce kafasında kurduğu büyük konuları aklında kaldığı kadarıyla topluyor ve kağıda döküyordu. Arasıra yazıyı kesiyor ve kenara birşeyler karalıyordu. “Vakit yok, vakit yok!” Yine çalışmasının devamını kötü bir yazıyla karalamaya koyuluyordu. Bu son ümitsizlik saatleri sırasında, gün ağarmadan önce yazdıkları, daha sonra gelecek matematikçileri, yüzlerce yıl heyecan içinde nefes nefese bırakacaktır. Matematikçileri uzun yıllar üzmüş olan problemin kesin çözümünü vermişti. Bir denklem hangi koşullarda çözülebilir? Sonunda bu da yaptıklarının bir parçasıydı. Bu büyük eserde, Galois gruplar kuramını parlak bir başarı ile kullanmıştır. Bugün, bu önemli ve oldukça soyut olan kuramın büyük öncüsü ve kurucusu ölmez Galois’dır. Çılgınca yazılmış bir mektuptan başka, Galois, ilmi durumunu yerine getirecek olan şahısa, İlimler Akademisine sunulmak üzere kaleme aldığı bazı yazıları emanet etti. On dört yıl sonra, 1846 yılında Joseph Liouville, bu yazılardan bazılarını “Teorik ve Pratik Matematik Dergisi”nde yayınladı. Kendisi de orijinal ve seçkin bir matematikçi olan Liouville bu yayının girişinde şunları yazıyor. “Evariste Galois’nın çalışmalarının temel amacı, denklemlerin köklerle çözülebilmesi koşullarıdır. Galois burada, dereceleri birer asal sayı olan denklemlere ayrıntılı bir biçimde uyguladığı genel bir kuramın temellerini atıyor. Daha on altı yaşından beri ve yeteneklerinin M. Richard adında çok iyi bir öğretmen tarafından desteklendiği Louis le Grand lisesinin sıralarında, Galois bu güç problemle uğraşmıştı.” Liouville daha sonra bu çalışmanın Akademiye gönderildiğini ve raportörlerin çalışmanın açık olmadığını belirterek kabul etmediklerini anlatır. “Aşırı derecede bir kısa yazma hevesi ve oldukça kapalı yazması anlamayı oldukça zorlaştırmaktadır. Eseri inceledim ve kullandığı yöntemin tümüyle doğru olduğuna inandım. Ufak tefek bazı eksikliklerini tamamladım. Çalışmamın sonucunu görünce de büyük bir zevk duydum” diyordu. Galois, son arzularını dostu Auguste Chevalier’e yazdı. “Analizde bazı yeni sonuçlar buldum… Yaptıklarımın doğruluğundan şüphem yok. Jacobi veya Gauss’tan, bu teoremlerin doğruluğu hakkında değil de, bu teoremlerin önemleri üstündeki düşüncelerini söylemelerini açıkça rica edersin. Eğer umduğum gibi çıkarsa, bazı kimselerin bu karışık örgüyü kendilerine kullanmaları için sökmeleri kalır. Seni hasretle kucaklarım.” Zavallı Galois, hala kendisinin anlaşılması için nasıl da çırpınıyordu. Jacobi cömert ve şerefli bir kimseydi. Ya Gauss ne diyecekti? Daha önce Abel’e ne demişti? Cauchy veya Labatchewsky hakkında ne söylemeyi unutmuştu? Bu kadar acı bir derse karşın, Galois hala boş ümitlere kapılıyordu. Bu ümitleri ancak ölümünden tam on dört yıl geçtikten sonra Liouville tarafından anlaşılacak ve eseri yayınlanacaktı. Böylece, dahi bir matematikçi çocuğun acı yaşam öyküsünü ve anlaşılmadan nasıl yok edildiğini gördük. Tüm öğretmenler, anneler ve babalar, karşınızdaki öğrencilerin her zaman bir Galois olabileceğini unutmayınız.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/192-galois-1811-1832

Laplace (1749 – 1827) “Doğanın tüm olayları birkaç değişmeyen kanunun matematik sonuçlandır” diyen Marquis Pierre-Simon de Laplace, 23 Mart 1749 günü bir köylü çocuğu olarak dünyaya geldi. Ailesi, Fransa’nın Calvados ilinin Beaumont-en-Auge Kasabasında yaşıyordu. Laplace’ın ilk çocukluk yılları hakkında çok az şeyler biliniyor. Onun çocukluğunu ve gençliğini saran karanlık yılları, kendini Beğenen davranışlarından ileri geliyordu. Kökeninin fakir bir köylüden gelişi onun yüzünü kızartır ve sürekli onu gizlemek için elinden geleni yapardı. Kısaca, bir köylü çocuğu olarak doğmadı ve kendini beğenen birisi olarak ölmedi cümlesi ile yaşam öyküsü özetlenebilir. Her ne duyguysa, Laplace köylü olması ve ailesinin fakir olmasından bir aşağılık duyardı. Tüm yaşamı boyunca bu duygu ve düşünceden kendisini kurtaramadı. Bu da onun zayıf bir yanıydı. Laplace, ilk yeteneğini köy okulunda gösterdi. Bu başarısı zengin komşularının sıcak dikkatini çekti. Zengin komşularını görmesi belki yukarıda sözünü ettiğimiz duyguları daha küçük çocukken şuur altına alıp baskı kurmuş olabilir düşüncesi akla gelmektedir. İlk başarılarını, teolojik tartışmalarda elde ettiği söylenir. Laplace, kendisini çok erken matematiğe verdi. O zaman Beaumont’ta askeri bir okul vardı. Laplace bu okula devam ediyordu. Söylendiğine göre, Laplace sonraları bu okulda bir süre matematik dersleri okutmuştur. Yine bir söylentiye göre, onun matematik yeteneğinden çok daha fazla hafıza yeteneğinin olduğu kanaati vardır. Bundan dolayı, Laplace on sekiz yaşına gelince zengin koruyucularının tavsiye mektuplarıyla Paris’in yolunu tuttu. Kendisinin yüksek yeteneğini biliyor, fakat bunda hiç şişme ve bir abartma göstermiyordu. Genç Laplace, kendine tam bir güven içinde Paris’e matematik dünyasını fethetmek için geldi. Paris’te doğru d’Alembert’in evine gitti. Tavsiye mektuplarını gönderdi. Fakat kabul edilmedi. D’Alembert, büyük ve kuvvetli kimselerin önerilerinden başka bir varlıkları olmayan kimselerle uğraşmıyordu. Laplace, övmeye değer bir anlayışla her şeyi hissetti. Eve döndü ve d’Alembert’e mekaniğin temel kuralları üzerine bir mektup yazdı. Böylece, oynadığı oyunda başarılı olmuştu. D’Alembert’in onu görmek için gönderdiği çağrı yazısında şöyle yazıyordu. “Bayım, görüyorsunuz ki öneri mektuplarına hiç değer vermiyorum. Sizin bu tür övgü mektuplarına hiç gereksinmeniz yok. Siz kendi kendinizi daha iyi tanıttınız. Bu bana yeter. Size yardım etmek bana bir borç olsun.” Birkaç gün sonra Laplace, d’Alembert’in sayesinde Paris’teki askeri okula matematik öğretmeni olarak atandı. İşte bu sırada Laplace, Newton’un genel çekim kanununun güneş sistemine uygulaması adlı büyük eserini verdi. Astronom matematikçi olduğu için, kendisine Fransız Newton’u denmiştir. Olasılıklar kuramının kurucusu gözüyle bakılabilir. “Bildiklerimiz çok değil, bilmediklerimiz çoktur” sözüyle alçak gönüllülüğünü göstermiştir. Matematiğe önem vermediğini, şöhret ve ün için değil de kendi arzularını yenmek için matematikle uğraştığını söyler. Dahi kimselerin buluşlarını veya yaşayışlarını incelemek ve kendisini onların yerine koyarak engelleri aşmak düşüncesindedir. Yaptığı çalışmaların tümünün kendisine ait olduğunu ileri sürer. Bu söz doğru değildir. Örneğin, yazdığı “Gök Mekaniği” adlı şaheserinde, gelecek kuşaklara bunu, ben yarattım gibi bir izlenimi vermeyi ustalıkla kullanmıştır. Diğer matematikçilerden aldıklarına kaynak vermez, kendine yarayan ve dışarıdan aldığı şeyleri kendine mal etmeyi çok kurnazca becerirdi. Gök Mekaniği için gereken analiz bilgilerini Legendre’den almış ve adını bile vermemiştir. Yalnız Newton’un adı geçer. Laplace, Lagrange’da değinilen üç cisim problemini güneş sistemi için düşündü. Newton’un çekim kanununu Güneş sistemine uyguladı. Gezegenlerin hareketlerinin Güneş tarafından belirlendiğini, devirli küçük değişiklikler hariç, gezegenlerin Güneşe olan uzaklıklarının değişmediğini ispatladı. O zaman yirmi dört yaşında olan Laplace için tarih 1773 yıllarını gösteriyordu. Bu başarısından dolayı Paris İlimler Akademisine üye seçildi. Yaşamının ve meslek hayatının ilk şerefini ve ödülünü almış oluyordu. Bulduğu matematik sonuçlarının büyük birçoğunu astronomide kullanmak için elde etti. Sayılar kuramı üzerinde bir süre çalıştı ve onu kısa bir zaman sonra bıraktı. Olasılıklar kuramı üzerinde çalışması yine onu astronomide kullanmasından kaynaklandı. Gök Mekaniği adlı yapıtı, yirmi altı yıllık, bir zaman sürecinde parça parça olarak yayınlanmıştır. Gezegenlerin hareketleri, şekilleri, gel-git olaylarını inceleyen ilk iki cilt, 1799 yılında çıktı. 1802 ve 1805 yıllarında iki cilt ve 1823 ile 1825 yılları arasında da beşinci cildi yayınlandı. Yalnız, bu eserlerde matematik kısımları pek açıklanmıyor ve yorumlardan da kaçınılıyordu. Hatta, matematik hesaplar için, “Kolayca görülür” deyimi kullanılıyordu. Aslında, bu kolayca görülür deyimi ters bir anlam da taşıyordu. Kendisi bile bu kolayca görülür dediği kısımları günlerce uğraşarak çözüyordu. Okuyucuları ve öğrencileri daha sonra bu deyim üzerinde haftalarca uğraşacaklarını bildiklerinden, homurdanmayı adet edinmişlerdi.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/187-laplace-1749-1827

Carl Friedrich Gauss (1777 – 1855) Alman astronomu, matematikçisi ve fizikçisidir. “Matematikçilerin prensi” ve “antik çağlardan beri yaşamış en büyük matematikçi” olarak da bilinen Gauss, matematiğin ve bilimin pek çok alanına etkisini bırakmıştır ve tarihin en nüfuzlu matematikçilerinden biri olarak kabul edilir. Daha çocukluğunda, erken gelişmiş zekası, matematiğe karşı zekasıyla sivrildi ve Brounseweig dükünün ilgisini çekti. Dük, okul masraflarını üzerine alarak O’ nu Göttingen Üniversitesine gönderdi. Henüz 16 yaşındayken Herschel’in 1781 de keşfettiği Uranüs gezegeninin yörünge elemanlarını hesaplayarak, Yer’in bir noktasından yapılan ölçülerle, bu gezegenin yörünge elemanlarını bulmaya yarayan ve günümüzde hala kullanılan bir metot ortaya koydu. 1798 de Helmesdt’e yaptığı bir inceleme gezisinden sonra, Braunschweig’a döndü ve birkaç yıl içinde kendisini büyük matematikçiler sırasına koyacak bir seri çalışma raporu yayımladı. Sayılar üzerine incelemeleri topladığı Disqvisitiones Arithmetice’de (Aritmetik Araştırmalara) (1805), eşitlikleri, ikinci dereceden şekilleri, serilerin yakınsaklığını v.b. ele aldı. Piazzi tarafından 1810 da, küçük gezen Cerez’in keşfinden sonra Gauss, çeşitli gökmekaniği araştırmaları yaptı, hayatının sonuna kadar bağlı kalacağı Göttingen rasathanesine müdür oldu (1807) .Theoria Motus Corporum Coelestium İn Sectionibus Conicis Solem Ambientium (Konik kesitIi ? gökcisimlerinin güneş çevresindeki hareket kuramı) (1808) adlı ünlü eserini yazd1. Legendre ile hemen aynı zamanda düşündüğü ve daha önce 1797 de yararlandığı ?- en küçük kareler metodundan (1821) başka, yanılmalar teorisi ve iki terimli denklemlerin çözümü için genel bir metot buldu; uygun-tasvir üzerine araştırmalar, yüzeylerin eğriliği ve Disqvisitiones Generales Carca Sperficien Curvas’ta (eğri yüzeyler üzerine genel araştırmalar) (1827) , ispat ettiği ünlü teoremi de yazmak gerekir. Bu teoreme göre, bükülebilen fakat uzatılamayan bir yüzeyin eğriliği, yani eğriliklerinin çarpımı değişmez. Göttingen ile Altona arasındaki meridyen yayının ölçülmesi sırasında (1821,1824), Gussu, geodezi çalışmalarında ışıklı işaretler verebilmek için, kendi adını taşıyan Helyotropu tasarladı. Optik alanında, eksene yakın ışık ışınları için düzenlenmiş merkezi optik sistemlerinin genel teorisini kurdu. Elektrikle özelIikle magnetizma ile ilgilendi, bu alanda magnetometreyi icat etti. Ve Resultate Aus Den Beabochtungen Des Manetischen Vereins (Yer magnetizmasının genel kuramı) (1839), adlı eserinde, magnetizmanın, matematik teorisini formülleştirdi. Suclides’ci olmayan hiperbolik geometrinin keşfinde, bu konuda hiç bir şey yayımlamamış olmakla birlikte, Gauss, Balyai ve Labocewsky’den önce çalışmalar yapmış ve başarı sağlamıştı.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/188-matematikcilerin-prensi-carl-friedrich-gauss-1777-1855

Leibniz (1646 – 1716) “Ben de o kadar fikir var ki, eğer benden daha iyi görmesini bilenler bir gün onları derinleştirecek ve benim zihin emeğime kendi kafalarının güzelliğini katacak olurlarsa, sonraları belki bir işe yarayabilir” diyen Gottfried Wilhelm Leibniz, 1 Temmuz 1646 günü Leibzig’de doğdu. Ancak yetmiş yıl yaşadı. 14 Kasım 1716 yılında Hannover’de öldü. Babası ahlak ilmi öğretmeni olup üç nesilden beri Saksonya hükümetine hizmet etmiş bir aileden geliyordu. Bu nedenle, Leibniz’in ilk yılları oldukça ağır bir politika ile yüklü bir bilgiçlik havası içinde geçti. Leibniz altı yaşındayken babasını kaybetti. Tarih hevesini babasından almıştı. Leipzig’de bir okula devam ediyordu. Babasının geniş kütüphanesinde bulunan çok sayıdaki kitapları sürekli okuyordu. Sekiz yaşında Latince’ye başladı. On iki yaşına gelince, Latince şiir yazacak kadar bu dilini ilerletti. Latince dilini öğrendikten sonra, kendi gayreti ile Yunan’ca öğrendi. Bu devirdeki zihni ve zekası Descartes’e benziyor ve çok iyi işliyordu. Klasik çalışmalardan usandığı için mantık ilmine başladı. On beş yaşından küçük olan bu çocuğun, klasiklerin ve skolastik Hıristiyanların büyüklerinin ortaya koyduğu mantığı düzeltmek için “Characteristica Universalis” adlı ilk denemesini verdi. Couturat, Russell ve başkalarının. dediği gibi, bu eser metafiziğin anahtarıdır. Yine İngiliz matematikçisi Boole’un söylediği gibi, kendisinin yarattığı sembolik mantık, Leibniz’in Characteristica’sının bir parçasıdır. Leibniz, on beş yaşındayken Leipzig Üniversitesine bir hukuk öğrencisi olarak girdi. Zamanının tümünü hukuka vermiyordu. İlk iki yıl içinde birçok felsefe eseri okudu. Zamanının filozofları olan Kepler, Galile ve Descartes’ın keşfettikleri yeni dünya hakkında bilgiler edindi. Sonuçta, matematik öğrenmeden bu ilimleri kavramının olanaksız olduğu kanaatine vardı. 1663 yılının yazını Jena Üniversitesinde geçirdi. Orada matematikçi olan Erhard Weigel’in derslerini izledi. Leibzig’e dönünce yeniden hukuka başladı. 1666 yılında yirmi yaşındayken doktora sınavı için hazırdı. Oysa, aynı yıllarda Newton, Woolsthorpe’ta bir köyde diferansiyel ve integral hesap ve genel çekim kanununu oluşturacak olan düşüncelere dalmıştı. Bu konuda Leibniz de geç kalmış sayılmazdı. Onu bu ateşe itecek ve tutuşturacak bir kıvılcımın çıkması gerekiyordu. Bu kıvılcım da, o zamanın Avrupa’sının ilme karşı görevini yerine getirme isteğiydi. Leibniz’e gıpta eden titiz Leipzig Fakültesi ona resmen gençliğinden, gerçekte tüm profesörlerden fazla hukuk bildiğinden dolayı, doktora ünvanını vermeyi kabul etmedi. Halbuki, 1863 yılında on sekiz yaşındayken parlak bir tezle başölye ünvanını almıştı. Leipzig Fakültesinde egemen olan mistik düşünceden iğrenen Leibniz, doğduğu şehri bırakıp Nürnberg’e gitti. 5 Kasım 1666 yılında Alfdorf Üniversitesine bağlı Nürnberg Üniversitesi Tarihi Yöntem adlı çalışmasından dolayı doktora ünvanını verdi. Aynı zamanda hukuk kürsüsünü de kabul etmesini rica etti. Descartes kendisine verilen generallik ünvanını kabul etmemişse, Leibniz de öneriye yanaşmayıp isteklerinin ne olduğunu söylememişti. Fakat bu arzuların küçük prenslerin lehine çene yarıştırmak olduğuna ihtimal verilmezse de tarih bir süre sonra kendisini bu adamlara bağlamıştır. Leibniz’in hayatındaki bu acıklı öykü, kanun adamlarına, ilim adamlarından önce rastlamış olmasıdır. Leibniz, hukuk derslerinin düzeltilmesi üzerine yazdığı kitabı, Leipzig’den Nürnberg’e olan bir seyahatinde kaleme almıştı, Bu da, Leibniz’in hangi koşullarda olursa olsun, durmadan okuması, yazması ve düşünmesini gösteren örneklerden biridir. O, durmadan okurdu, yazardı ve düşünürdü. Matematik çalışmalarının çoğunu kendisini çağıran aristokratlara giderken çağın o kötü yollarında kötü arabalar içinde sallana sallana giderken yollarda yazmıştır. Bu çalışmalarının tümü bugün Hannover kütüphanesinde bağlı olarak durur, Kimse de ona yanaşıp el atamaz. Çünkü, bunlar araştırmak için araştırıcı bir ordunun sabırlı bir çalışması gereklidir. Bu eserler ve fikirler o kadar çoktur ki, yayınlanmış veya yayınlanmamış fikirlerin yalnız bir tek kafadan çıktığına bile inanmak zordur. Bu kadar eseri düşünüp yazan kafa frenelog ve anatomistlerin dikkatini çekmiştir. Bir söylentiye göre, Leibniz’in kafasını mezardan çıkarıp ölçmüşler, incelemişler ve normal bir adamın kafasından pek küçük olduğunu görmüşlerdir. Gerçekten de, sağlığında da kafasının ölçüleri fazla büyük değildi. Bu kadar küçük kafalı olup da sürekli okuyan, düşünen ve yazan bir kimse dünyaya az gelmiştir. 1666 yılında olasılıklar kuramına başladı. Bu sıralarda öğrenciydi. Okuduğu her alanda olduğu gibi, bu sahada da eser veriyordu. Matematik, Leibniz’in parlak zekasının fışkırdığı bir sahadır. Bundan başka, hukuk, din, siyaset, tarih, edebiyat, mantık, metafizik ve kuramsal felsefe konularında sayısız eser bırakmıştır. Bundan dolayı kendisine evrensel deha denmektedir. Onun evrensel bir deha oluşu, diferansiyel ve integral hesaptaki sürekliliği, olasılıklar kuramında ise süreksizliği analize sokmasındadır. Zaten Newton’la ayrıldığı nokta da olasılıklar kuramıdır. Verimsiz gibi görünen soyut olasılıklar kuramının öncüsü Leibniz’dir. Doğru düşünme dediğimiz mantık anatomisinin ve fikirlerin kanunlarının bir olasılık analizi olduğunu görebilmiştir. Newton’da, yüzyılının matematik düşünme yöntemi belirli bir şekil ve varlık halini almıştır. Cavalieri (1598-1647), Fermat (1601-1665), Wallis (1616-1703), Barrow (1630 -1677) ve başkalarının çalışmalarından sonra, diferansiyel ve integral hesabın oluşturulmasından kaçınılmazdı. Matematik bu olgunluğa gelmişti. Archimedes’ten bu yana da 2000 yıllık bir gecikme de olmuştu. İşte Leibniz, Newton gibi sonsuz küçükler hesabını billurlaştırdı. Leibniz, zamanının düşünme şeklini ifade eden bir araçtan çok daha büyük bir varlıktı. Matematikte Newton bu dereceye varamadı. Leibniz, matematik ve mantık alanında çağının iki yüzyıl ilerisindeydi. Diferansiyelin geometrik bir yorumunu verdi. Bu, matematiğe en büyük hizmetti. Süreklilik ve süreksizlik ya da analitik veya olasılıklar gibi matematik düşüncenin iki karşıt alanında fikir yürütmüş bir kimseye ne Leibniz’den önce ve ne de Leibniz’den sonra matematik tarihinde rastgelinememiştir. Leibniz’in olasılıklar kuramındaki çalışmaları onun yaşamı sürecinde değerlendirilememiştir. Hatta bir yerde taktir de edilememiştir. Ancak, on dokuzuncu yüzyılda Boole’un çalışmalarından sonra değer kazanarak yerini almıştır.Yirminci yüzyılda Whitehead ve Russell’ın çalışmaları, Leibniz’in evrensel bir gösterim hakkındaki hayalinin kısmen gerçekleştirilmesi olmuştur. İşte, ancak o devirde Leibniz’in tam istediği üstünlükte, ilmi ve matematik düşünme biçimi için, matematiğin olasılılıklar tarafının yüksek önemi gözüktü. Bugün, Leibniz’in olasılıklar yöntemi, gösterim mantığı ve gelişmelerinde meydana çıkarıldığı biçimde analiz için, analizin kendisi kadar önemlidir. O zaman, Leibniz ve Newton analizi bugünkü karışıklığın yoluna koymuşlardı. Çünkü, gösterim yöntemi, matematik analizi Zeno’dan beri temellerinden sarsan çelişkilerden ayırabilmek için biricik genel hal çaresini verir. Leibniz, olasılıklar kuramı için Fermat ve Pascal’ın çalışmalarını da okumuştu. Onların bu yöndeki çalışmalarını daha da ileri götürmeyi düşünüyordu. Fakat, diferansiyel ve integral hesap daha çekiciydi. Bu hesabın gelişmesi ve uygulamaları on sekizinci yüzyıldaki matematikçileri de inanılmaz bir biçimde kendisine çekmiştir. Sonra, 1910 yılına kadar bugünkü fikirleri kabul etmeyen bazı kimseler hariç, onun olasılıklar analizi kimse tarafından bilinmedi. Leibniz’in gösterime bağlı düşünme fikri ancak Whitehead ve Russell’ın Principia Mathematica’larıyla gerçekleşti. 1910 yılından sonra, Leibniz’in bu programı, modern matematiğin en fazla ilgiyi çeken noktalardan biri oldu. Bugün bile bu konuda oldukça ciddi çalışmalar yapılmaktadır. Her doğru düşünmeyi bir gösterimle ifade etme fikrini Leibniz tek başına da yapmamıştır. Zaten bu proje daha yapılmamıştır. Leibniz tüm bunları düşünmüş ve bu alanda cesaret verici bir girişimde bulunmuştur. Fakat, değersiz şan ve gereksiz ünden çok, parasal olanaklar elde etmek için, küçük prenslerine karşı olan bağlılığı fikrinin evrenselliğine ve son yıllarını dolduran tartışmalar, Newton’un Principia’sına benzer bir şaheser yaratmasına engel oldu. Leibniz’in başardıklarını kısaca gözden geçirirken içinde birinci derecede bir matematikçi yeteneğinden çok daha fazla bir varlık sarf edilen bu para düşkünlüğünün derin izlerini göreceğiz. Newton hakkı olmayarak halkın kendisine şöhret verilmesini isteyen bir tutumu vardı. Gauss ise, fikirce kendisinden aşağıda olan insanların dikkatini çekmek için büyük eserinden uzaklaşması tutumunu sürdürmüştü. Tüm büyük matematikçiler arasında böyle zayıf tarafları görülmeyen tek matematikçi, Archimedes’ti. O, birçok kimsenin erişmek istediği aristokrat gibi yüksek bir zümrenin çocuğuydu ve bu nedenle de oldukça alçak gönüllüydü. Leibniz’e gelince, kendini kullanan aristokratlardan bol bol para alıyordu. Bu şekildeki para kazanmalar Leibniz’in matematiğinin daha çok ilerlemesine bir engeldi. Gauss’un söylediği gibi, Leibniz, matematik bilgisinin çoğunu boş yere israf etmiştir. Her ne olursa olsun, Leibniz bir değil birçok hayat yaşamıştır. Sadece diplomatik alanda yaptığı işler, bir insanın hayatını doldurmaya yeter. Şüphesiz, bu çok yönlü yaşamın sonu gelmedi. Eğer onun eğildiği her konuda verdiği eserleri toplayacak büyük adamlar olsaydı, bugünkü ilim ve özellikle matematik tarihi bambaşka olurdu. Bunun yerine, yirmi yaşında Mainz Elektörü için bir hukuk danışmanı ve hatırı sayılır bir ticaret memuru oldu. 1672 yılına kadar, modern matematik hakkında çok az şey biliniyordu. Yirmi altı yaşına gelince, Paris’te fizikçi Christian Huygens’e (1629 -1695) rastladı. Saatler kuramı ve ışığın dalga kuramının kurucusu olan Huygens aynı zamanda iyi bir matematikçiydi. Leibniz’e sarkaç üzerinde yaptığı çalışmaları gösterdi. Huygens’in kendisine dersler vermesini istedi ve onun bu isteği Huygens tarafından kabul edildi. Doğuştan bir matematikçi olan Leibniz’in dehası, Huygens’in verdiği dersler altında parlamaya başladı. 1673 yılının ocak ayından Mart ayına kadar İngiltere’ye yaptığı seyahatler süresince derslere ara verildi. İngiliz matematikçilerinin bazılarına yaptığı çalışmaları gösterdi. Böylece onlarla tanıştı. Leibniz, Londra’da kaldığı süre içinde Royal Society’nin toplantılarına katıldı. Orada, kendisinin yaptığı hesap makinesini ve diğer keşiflerini sundu. 1673 yılında Royal Society’nin ilk yabancı üyesi oldu. Buna karşın, Newton da, 1700 yılında Paris’teki İlimler Akademisinin ilk yabancı üyesi seçildi. Londra’ya dönünce, Huygens ona matematik çalışmalarına devam etmesini öğütledi; 1675 yılında diferansiyel hesabın bazı basit formüllerini çıkarmış, yine kendi sözüne göre, temel teoremi keşfetmişti. Fakat bu teorem ancak 11 Temmuz 1677 yılından önce yayınlanmadı. Newton da eserini Leibniz’in eseri yayınlandıktan sonra yayınladı. Leibniz, 1682 yılında kurduğu ve baş yazarlığını yaptığı Acta Eruditorum’da imzasız yazdığı bir yazı ile Newton’un sert bir eleştirisini yapınca kıyametler koptu ve aralarındaki tartışma ciddi boyutlara ulaştı. 1677 ile 1704 yılları arasında, Leibniz’in yaptığı çalışmalar tüm Avrupa’da yayıldı. Özellikle, İsviçre’li Jacques ve Jean Bernoulli’nin bu matematiğin yayılmasında çok fazla yararları oldu. Halbuki, İngiliz’ler Newton’un çalışmalarını devam ettirmediler. Bu nedenle de İngiltere’den uzun yıllar matematikçi çıkmadı. Leibniz’in son kırk yılı, aşağı yukarı Brunswick ailesine hizmetle geçti. Bu aile için bir arşivci, soylarını çıkaran bir tarihçi olarak çalışıyordu. Efendilerinin çıkarları için eski evrakları çıkarıyor ve yerine göre de ustaca tarihi gerçekleri saptırmak için silinti ve kazıntı bile yapıyordu. 1687 ile 1690 yılları arasında tarihi araştırmalar yapmak amacıyla tüm Almanya’yı, Avusturya’yı ve İtalya’yı gezdi. İtalya’da bulunduğu sırada Roma’yı ziyaret etti. Papa tarafından Vatikan’ın kütüphanecilik görevini almaya davet edildi. Koşullardan ilki Katolik olması ile ilgili olduğundan, bu görevi Leibniz kabul etmeyerek geri çevirdi. Bir ara Katoliklerle Protestanları barıştırmak için 1683 yılında Hannover’de toplanıldı. Fakat bir barış sağlanamadı. Leibniz’in bu ve bundan sonraki barıştırma ve birleştirme çalışmaları da sonuç vermedi. 1688 yılında Katoliklerle Protestanlar arasında İngiltere’de kanlı çarpışmalar oldu. Her iki tarafın karşılıklı suçlamaları ve kötülemeleri altında bu mezhep kavgaları sürüp gitti. Bu kavgalardan zarar gören birçok matematikçi de vardır. Leibniz’in uğraştığı konuların tam bir listesini vermek olanaksızdır. İktisat, filoloji, devletler hukuku, maden ocakları yapımı, teoloji, sayısız akademinin kurulması ve geliştirilmesi gibi her şeye el atmıştır. Onun en az başarılı olduğu saha mekanik ve fizikti. En önemli eserleri içinde birçok akademiyi kurması ve onları çalıştırması sayılabilir. Altmış sekiz yaşına doğru iyice Çöktü. Eski zekası kalmadı. Sanki bir gölge haline gelmişti. Hastaydı. Çok çabuk ihtiyarlıyordu. Tüm hayatınca prenslere hizmet etmiş olan Leibniz, bu hizmetlerin karşılığını görüyordu. Tartışmalardan bıkmış ve kendisi de çökmüştü. Daha önce hizmetini yürüttüğü George Louis, onu kabul etmiyor ve Hannover kütüphanesine gidip ünlü Brunswick ailesinin yanına dönmesini öğütlüyordu. Üç yüz yıllık bir tarih zamanını inceledikten sonra bu tarihi 1005 yılından öteye götüremedi. Tarihte diplomatça bazı değiştirmeler de yapmıştır. Bu da onun saygınlığına biraz gölge düşürmüştür. Leibniz’in bu el yazmalarını da tam olarak inceleyecek kimse çıkmamıştır. Bu kadar çok yönlü olan Leibniz, yetmiş yaşına gelince, 14 Kasım 1716 günü Hannover’de öldü. Bizde, matematiğe yaptığı sayısız hizmetleriyle yaşamaktadır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/184-leibniz-1646-1716

Pierre De Fermat (1601-1665) Fermat 17 Ağustos 1601 yılında Fransa ‘nın Beaumont-de-Lomagne kentinde doğmuştur. Babası zengin bir deri tüccarı ve Beaumont-de-Lomagne ‘de ikinci konsolostu. Fermat ‘ın bir erkek kardeşi ve iki kız kardeşi vardı ve doğmuş olduğu bu kentte büyümüştü. Buna karşın yerel Fransiscan Manastırına gittiğine dair çok az kanıt vardır. 1920 ‘lerin ikinci yarısında, Bordeaux ‘ya gitmeden önce Toulouse Üniversitesinde eğitim görmüştür. Bordeaux ‘da ilk ciddi matematiksel araştırmalarına başlamış ve 1629 ‘da orada bulunan  bir matematikçiye Apollonius ‘un Plane loci adlı eserinin, kendisinin düzenlemiş olduğu bir kopyasını sunmuştur. Bordeaux ‘da  Beaugrand ile tanışmış ve bu sırada matematiğe olan ilgisini Fermat ile paylaşan Etienne d’Espagnet ‘e sunmuş olduğu “maximum ve minimum” üzerindeki önemli çalışmalarını üretmiştir. Bordeaux ‘dan, üniversitede hukuk eğitimi aldığı Orléans ‘a gitmiştir. Medeni hukuk alanında derece almış ve Toulouse parlâmentosunda meclis üyesi olma hakkını kazanmıştır. Böylece Fermat 1631 yılından itibaren artık bir hukukçu ve Toulouse ‘da bir devlet memuru olmuştur ve sahip olduğu bu işinden dolayı, ona Pierre Fermat olan adını Pierre de Fermat olarak değiştirme yetkisi verilmiştir.. Fermat hayatının geri kalan kısmını Toulouse ‘da geçirdi, ancak orada çalıştığı kadar doğduğu yer olan Beaumont-de-Lomagne ‘da ve Castres yakınlarında bir kasabada da çalıştı. 14 Mayıs 1631 ‘deki atamasından itibaren parlâmentonun düşük meclisinde çalışmış ancak 16 Ocak 1638 ‘de daha yüksek bir meclise atanmış ve 1652 ‘de ceza mahkemesinin en yüksek makamına terfi ettirilmiştir. Meslek yaşamında elde edebileceği daha yüksek terfiler de vardı ancak terfiler çoğunlukla yaşça daha kıdemliler tarafından veriliyordu ve 1650 ‘lerin başlarında veba bu bölgeyi fena vurmuş ve bu kıdemlilerin çoğu ölmüştü. Fermat ‘ın kendisi de  vebaya yakalandı ve 1653 ‘de öldü. Tabi ki Fermat Matematikle de meşgul olmuştu. Toulouse ‘ya gittikten sonra da Beaugrand ile matematik arkadaşlığını sürdürmüştür ancak burada yeni bir matematik arkadaşı daha kazanmıştır, o da Carcavi ‘dir. Carcavi de Fermat gibi bir meclis üyesidir, ancak onları yakınlaştıran ve aralarında paylaştıkları şey matematik olmuştur. Fermat Cercavi ‘ye matematik üzerine olan buluşlarını anlatmıştır. 1636 ‘da Cercavi işi dolayısıyla Paris ‘e gitti ve Mersenne ve grubuyla temasa geçti. Carcavi ‘nin, Fermat ‘ın düşen nesneler ile ilgili olarak buldukları ile ilgili açıklamaları Mersenne ‘in büyük ilgisini çekti ve Fermat ‘a bir mektup yazdı. Fermat 26 Nisan 1636 ‘da bu mektubu cevapladı ve Mersenne ‘e bazı hataları belirtmenin yanı sıra spiraller üzerindeki çalışmalarını ve Apollonius ‘un Plane loci adlı eserindeki düzenlemeleriyle ilgili açıklamaları da yazdı. Fermat ‘ın spiraller üzerindeki çalışmaları, serbest düşmede nesnenin izlediği yolun hesaba katılmasıyla motive edilmiş oldu ve Archimedes ‘in spirallerin altında kalan alanı hesaplamaya yönelik çalışmalarının genelleştirilmiş hallerinin metodlarını kullandı. Bu ilk mektupta aynı zamanda Fermat ‘ın Mersenne ‘den, Paris matematikçilerine vermesini istediği iki tane maximum problemi de vardı. Bu Fermat ‘ın mektuplarının tipik bir özelliğiydi, kendisinin daha önceden bulmuş olduğu bir sonucu, başkalarının da bulmasını sağlamak için onlara meydan okuyacaktı…. Roberval ve Mersenne Fermat ‘ın bu ilk mektubunu ve diğerlerini gerçekten oldukça zorlayıcı buldular ve genellikle bilinen tekniklerle çözülemeyeceğini gördüler. Bunun üzerine Fermat ‘tan kullandığı metotlarını açıklamasını istediler ve Fermat Paris ‘teki matematikçilere  “bir eğrinin , maximum, minimum ve teğetlerini belirleme metotları” ‘nı, kendisinin yeniden düzenlemiş olduğu  Apollonius ‘un Plane loci adlı eserini ve yine kendisinin geometriye cebirsel yaklaşım -Introduction to Plane and Solid Loci  yazılarını gönderdi. Fermat, önemli matematikçiler arasında olma ününü çabuk yakalamıştı, ancak çalışmalarını yayınlama girişimi çoğu zaman başarısızlıkla sonuçlandı, çünkü Fermat hiç bir zaman çalışmalarının kusursuz bir forma sokulup tamamen bitirilmiş bir hale gelmesini istememişti. Yine de bazı metotları yayınlanmıştı, örneğin; Hérigone, en önemli çalışmalarından biri olan Cursus mathematicus adlı eserine Fermat ‘ın maximum ve minimum metotlarını eklemişti. Fermat ve diğer matematikçiler arasında giderek gelişen bu mektuplaşmalar malesef evrensel bir övgü bulamamıştır. Frenicle de Bessy, çözülmesini imkansız bulduğu Fermat ‘ın problemlerine karşı büyük bir kızgınlık duymuş ve bunun üzerine Fermat ‘a sert bir mektup yazmıştır. Fermat ‘ın  bu mektuba detaylı bir açıklama vermesine karşılık yine de Frenicle de Bessy, Fermat ‘ın kendisini aldattığını düşünmüştür. 1643 – 1654 yılları arasındaki dönem Fermat ‘ın Paris ‘teki meslektaşlarıyla ilişkilerinin zayıfladığı dönemlerdendi. Tabi bunun bazı sebepleri vardı. Birincisi, Fermat ‘ın işlerinin yoğunluğunun  onun matematiğe fazla zaman ayırmasını engellemesiydi. İkincisi ise 1648 yılından itibaren Toulouse ‘u ciddi bir biçimde etkileyen Fransa ‘daki sivil savaştı ve sonuncusu ise Toulouse ‘daki hayatta ve tabii ki Fermat ‘ın hayatında ölümcül izler bırakan 1651 vebası. Buna rağmen yine de Fermat bu dönemde sayılar teorisi üzerinde çalışmıştı. Fermat çoğunlukla sayılar teorisi üzerindeki çalışmalarıyla, özellikle Fermat ‘ın son teoremi (Fermat ‘s Last Theorem ) ile bilinir. Bu teorem şu şekildedir; n>2 için xn + yn = zn eşitliğini sağlayan sıfırdan farklı x, y ve z tamsayıları yoktur. Fermat, Diophantus ‘un Arithmetica adlı eserinin Bachet tarafından yapılan çevirisinin kenarına şunları yazdı; ” Gerçekten de kaydadeğer bir ispat buldum ancak bunu kitabın kenarına sığdırmam mümkün değil”. Bu köşe notu ancak Fermat ‘ın oğlu Samuel ‘in 1670 yılında Diophantus ‘un Arithmetica’sının Bachet çevirisinin babasının notlarını da içeren yeni bir baskısını yayınlamasından sonra bilinmeye başlandı. Bugün kesin olmamakla birlikte Fermat ‘ın bu ispatının yanlış olduğuna inanılmaktadır. Fermat ‘ın bu iddiası 1993 Haziranında İngiliz matematikçi Andrew Wiles tarafından ispatlandı, ancak Wiles bir süre sonra bazı problemler ortaya çıkınca, ispatını bulduğuna dair iddiasını geri aldı. 1994 Kasımında ise tekrar ,şu an bilinen, ispatı bulduğunu açıkladı. Fermat ‘ın Paris ‘li matematikçilerle mektuplaşması 1654 yılında Etienne Pascal ‘ın oğlu Blaise Pascal ‘ın, Fermat ‘tan “olasılık”  hakkındaki fikirlerini açıklamasını rica eden bir mektup yazmasıyla tekrar başladı. Aralarındaki kısa mektuplaşma “olasılık teorisi” ni ortaya çıkardı ve bu sebeple bugün bu teoriye, bu iki matematikçinin ortaklaşa teorisi olarak bakılmaktadır. Durum her ne kadar böyle olsa da Fermat, konuyu “olasılık” tan “sayılar teorisi” ne çevirmeye çalıştı. Pascal bununla hiç ilgilenmedi ancak Fermat bunu farketmeden Carcavi ‘ye şunları yazdı; Dahiliklerine gerçekten büyük saygı duyduğum Bay Pascal ‘a fikirlerimi açıkladığım  için çok büyük mutluluk duyuyorum. İkiniz de bu baskının sorumluluğunu üstlenebilirsiniz, kısa açıklamalar ve eklemler yapabilirsiniz. İşlerim çok yoğun olduğundan dolayı üzerimden büyük bir yük almış olursunuz. Ancak Pascal Fermat ‘ın bu çalışmalarını yine de yayınlamıyacaktı. Bunun üzerine Fermat çalışmalarının yayınlanması ile ilgili bu ani fikrinden yine vazgeçti. Fermat zor problemleriyle her zamankinden daha da ileri giderek; Fransız, İngiliz, Hollanda ‘lı ve hiçbir Avrupalı matematikçi tarafından çözülemeyen iki problem Bay Fermat tarafından ortaya atılmıştır.. Şeklinde bir açıklama yaptı. Fermat ‘ın problemleri bir çok matematikçinin Sayılar Teorisi ni önemli bir konu olarak düşünmesinden dolayı fazla ilgi görmedi. Ancak Bu problemlerden ikincisi (N bir kare değil iken  Nx2 + 1 = y2  ifadesinin tüm çözümlerini bulunuz, şeklinde olan problem)   Wallis ve  Brouncker tarafından çözüldü ve bu çözüm sırasında continued fraction konusu daha da geliştirilmiş oldu. Frenicle de Bessy belki de Sayılar Teorisi  ‘ne ilgi gösteren tek matematikçiydi, ancak ne var ki o da Fermat ‘a bu konuda destek olacak kadar bir matematik yeteneğine sahip değildi. Fermat, “iki küp ‘ün toplamı bir küp olamaz” adında başka problemler de ortaya atmıştı. ( Bu, Fermat ‘ın Son Teoremi olarak bilinen teoremin özel bir halidir. Bu da Fermat ‘ın genel kural için bulmuş olduğu ispatın yanlış olduğunun farkına vardığını gösteriyor.) Bu problemler şu şekildeydi: x2 + 4 = y3 ifadesinin iki, x2 + 2 = y3 ifadesinin ise tek tamsayı çözümü vardır. 1656 yılında Fermat Huygens ile mektuplaşmaya başladı. Bu mektuplaşmalar zamanla Fermat ‘ın sayesinde Sayılar Teorisi ‘ne doğru yönlenmeye başladı. Bu Huygens ‘in ilgisini çekmiyordu ancak Fermat bu konuda ısrarlıydı ve 1659 yılında Carcavi vasıtasıyla Huygens ‘e “New Account of Discoveries in the Science of Numbers” adlı eseri yolladı ve daha önce yapmadığı kadar çok metodunu ortaya koydu. Fermat, sonsuz iniş ‘in metotlarını açıkladı ve bunu 4k+1 formundaki asal sayıların iki kare toplamı olarak yazılabileceğini kanıtlamada kullandı. Farz edelim ki 4k+1 formundaki bir asal sayı iki kare toplamı olarak yazılamasın, öyleyse 4k+1 formunda iki kare toplamı olarak yazılamayan daha küçük bir sayı vardır. Fermat ‘ın bu mektupta açıklayamadığı ise küçük sayının daha büyük olan sayıdan nasıl üretileceğidir. Bir varsayım Fermat ‘ın bu adımı nasıl gerçekleştireceğini bilmediğini söylemektedir, ancak şu bir gerçektir ki Fermat ‘ın metodunu açıklamada düşmüş olduğu bu çıkmaz, matematikçilerin ilgisini konu üzerinde yitirmesine neden olmuştur. Ve bu Euler ‘in bu konudaki problemleri tekrar ele alıp bu boşlukları doldurmasına dek sürmüştür.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/177-pierre-de-fermat-1601-1665

Pascal (1623 – 1662) Pascal, 19 Haziran 1623 günü Fransa’da Clermont’ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris’e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal’ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur. Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton’dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat’la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues’dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi. Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal’ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides’in “Elements” adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu. Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides’in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert’in anlattıklarına göre; Pascal Euclides’in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır. Pascal on dört yaşına gelince, Mersenne tarafın dan yönetilen ilmi tartı şmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal’ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu’yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal’a bir memurluk verir. Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal’ın bu büyük teoremine “kedi beşiği” adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes’i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal’ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal’ın geometrisinde çokluk yoktur. Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu. Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu. 1648 yılında Toriçelli’nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal’la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal’ın barometre deneyleri düşüncesini, Mersenne’nin çalışmalarından çalmış olmasından şüphelendi. Descartes’le Pascal’ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal’sa Jansen’in mezhebini savunuyordu. Pascal’ın açık sözlü kız kardeşi Jacqueline’nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes’in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı. Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat’la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat’ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal’ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir. Bu büyük olasılıklar kuramının çıkış nedeni, Pascal’a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal’ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur. 1 11 121 1331 14641 Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal’ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur. Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/178-pascal-1623-1662

Isaac Newton (1642 – 1727) 1642 yılında İngiltere’nin Woolsthrope kasabasında dünyaya gelen Newton’un en önemli buluşu, diferansiyel ve integral hesabı keşfetmesidir. Zaten Newton’u dünyada gelip geçmiş üç büyük matematikçiden biri yapan buluşu budur. İşin teknik yönü, üniversitelerde uzun uzun verilir. Bu nedenle, sadece adı bizim için şimdilik yeterlidir. Newton, bir ara teolojiye de ilgi duydu. Bu konuda bazı yorumları ve düşünceleri de vardır. Newton, 1661 yılının haziran ayında Cambridge’deki Trinity College’e girdi. Giderlerinin bazılarını karşılamak için okulda bazı işlerde çalışıyordu. İç harp İngiltere’de tüm şiddetiyle sürüyordu. Önceleri yavaş, fakat sonraları çabuk olarak kendini toparladı ve çalışmalarına daldı. Newton’un matematik öğretmeni Isaac Barrow (1630 – 1677), hem ilahiyatçı ve hem de matematikçi biriydi. Matematikte parlak fikirli olan Barrow, öğrencisinin kendisinden çok ileride olduğunu kabul ediyor ve 1669 yılında matematik kürsüsünü bırakıp sırası gelince, yerini o eşsiz büyük deha Newton’a bırakıyordu. Barrow, geometri derslerinde kendine özgü yöntemlerle, alanları hesaplamak, eğrilere üzerindeki noktalardan teğet çizmek için yollar gösteriyordu. İşte bu dersler Newton’u diferansiyel ve integral hesabı bulmaya ve bu sahada çalışmaya yönelten ilk adımlardır. Diferansiyel ve integral hesabın bulunmasında, değişken, fonksiyon ve limit kavramı kullanılmıştır. Fonksiyon kelimesini ilk kez Leibniz kullanmıştır. Bugüne kadar da bu sözcük değiştirilmemiştir. Limit fikrini ve kavramını Newton ve Leibniz kullanmıştır. Özellikle Newton bu sahada başarılı olmuştur. Her ikisi de çok yönlü olan bu dahiler, aynı zamanda birbirlerinden habersiz az çok farklılık gösteren yöntemleriyle diferansiyel ve integral hesabı bulmuşlardır. Isaac Newton, 1727 yılında böbreklerindeki rahatsızlık yüzünden yaşamını yitirdi.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/179-isaac-newton-1642-1727

Rolle (1652 – 1719) Fransız matematikçisi olan Michel Rolle, 1652 yılında Ambert’te doğdu. 1690 yılında “Cebir Kitabı” adlı eserini yayınladı. Bu kitapta, dereceleri gittikçe azalan bir yardımcı denklemler serisinden yararlanarak, bazı denklem tiplerinin gerçel köklerinin bulunması olanağını veriyordu. 1691 yılında kendi adıyla anılan Rolle teoremini ortaya attı. Bir çok terimlinin türevi iki gerçel kökü arasında en az bir kere sıfır olur. 1719 yılında öldü.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/175-rolle-1652-1719

Thales (M.Ö.624 – M.Ö.547) Antik dönemin ünlü filozofudur. ataları Fenikelilerdir.. Son kaynaklar, M.Ö. 625 yılında Milletos’ta doğup, 545’te öldüğünü kabul eder. Yaşadığı yıllarda; geniş bir araştırma, inceleme, düşünme ve mühendislik yeteneği ile ilginç bir ticari zekası sonucu üne kavuşmuştur. Miletos Okulu’ nun korucusudur. THALES zamanımıza kadar intikal eden yazılı bir eser bırakmamıştır. Düşünceleri öğrencileri yoluyla zamanımıza kadar intikal etmiştir. THALES, ARİSTO’ nun (M.Ö. 384,322) eserlerine atfen, fizik ve doğal felsefenin, EUDEME’ nin (Aristo’nun öğrencisi), eserlerine atfen de astronomi ve matematiğin kurucusu kabul edilir. Bu tür görüşler, konu ile ilgili yayınlarda her geçen yıl hızla yaygınlaşmıştır. Netice itibariyle de THALES’ e mümtaziyet ve ebedilik vasıfları verilmiştir. THALES’ in astronomide kurucu addedilmesine ve üne kavuşmasına sebep olan olaylardan birisi şudur. Atina’da M.Ö. 28 Mayıs 585 tarihinde görülebilecek Güneş tutulma olayını, tutulmanın vukuundan önce haber vermiş olmasıdır. Thales’ e büyük ün kazandıran bu olay Babilleler tarafından bilinmekte idi. Burada önemli olan, tutulma olayının kendisi değil, haber verenin bu bilgiyi aldığı kaynaktır. Gerçekte: THALES’ in bu bilgiyi eski Mısır ve Mezopotamya’ dan elde ettiğinde bütün kaynaklar birleşmektedir. Matematikte kurucu addedilmesine sebep olan bilgileri de şunlardı. Bir dairenin içine üçgen çizme probleminin çözümü. cisimlerin (piramitlerin) gölgesi yardımıyla yüksekliğinin hesabını. üçgenlerin kenarları ile ilgili bağıntılar ters açıların eşitliği konusu, küresel üçgenlerin bazı özellikleri eşkenar üçgenlerin taban açılarının eşitliği teoremi… Fizikte kurucu addedilmesine sebep olan bilgileri de şunlardır. Bazı cisimlerin demir üzerindeki çekim etkisi, Nil Nehri’nin taşmasının nedenlerinin açıklanması. THALES’e atfedilen ve bilimlerde kurucu unvanını almasına sebep olan bu bilgiler, THALES’ten 2000 yıl kadar önceleri Eski Mısırlılar ve Mezopotamyalılar tarafından bilinmekte idi. THALES, eski Mısır ve Babil’e yaptığı birçok seyahatleri sırasında, buralarda eski dönemlerin bilim ve tekniklerini dönemin bilginlerinden (kahin, katip, rahip) öğrenmiştir. Bu ilk medeniyetlerin, eski imparatorluk dönemlerinden öğrenmiş ve bu suretle Grek felsefesinin, geometri ve astronomisinin gelişmesine ilk çıkış noktası olarak temel kavramlar edinmiştir. Ülkemizde, diğer antik dönem bilginlerine olduğu gibi THALES’ e mümtaziyet ve ebedilik verilmesine sebep, Batı’ lı kaynakların yayınlarıdır. Değişik bir ifade ile bilgilerimizin noksan olduğu dönemlerin damgasını taşır. Bize göre: THALES’in bilim tarihindeki yeri ile ilgili gerçekleri şu şekilde özetlemek mümkündür. THALES, ilk medeniyetlerin beşiği olan eski Mısır bölgesini uzun yıllar dolaşmıştır. Kaynaklardan bazıları. THALES’in Babil bölgesine kadar gittiğini yazar. THALES eski Mısır ve Mezopotamya’ ya yaptığı bu geziler sırasında matematik, astronomi ve fiziğin temel bilgilerini öğrenerek Atina’ ya döndü. Burada, elde ettiği bilgileri önce sistematize, bilahare de kanuniyet (teori) halinde ifade etmiştir. Bugün için “saçma” olan şu görüşler de THALES’e aittir: “Yeryüzü, suyun üstündedir ve suyun üstünde tahta parçası gİbi durur, dalgalanır.”, “Kehribar da cisimleri çektiği için ruha sahiptir.” THALES’ in doğa felsefesi ile ilgili görüşlerini, ayrı bir İhtisas dalı olması sonucu burada konu etmiyoruz Ancak şunu belirtelim. THALES, alemin yaratılışı ile ilgili bilgileri ortaya koyan Antik dönemin ilk bilginlerindendir. Miletos Okulu’nun Kurucu ve Öğretim Üyeleri Miletos Okulu’nun Kurucu ve Öğretim Üyelerinin önemli özeIIiği, İyonya’ nın önde gelen bilim, kültür ve sanat merkezi olmasıdır. Aynı zamanda “Miletos Okulu” adlı bir bilim kuruluşuna sahip olmasıdır. Miletos Okulu’ nun kurucusu THALES’ tİr. Bu okulda THALES’in öğrencileri olarak, ANAXIMANDROS (M.ö. 610-543) ve ANAXİMENES (M.Ö. 546 hayatta) yetişmiştir. Kaynaklar, FİSAGOR ‘un da (M.Ö. Sisam 570 -Metapante 500?) bu okulda yetiştiği ve Thales’in öğrencisi olduğunu belirtir. Miletos okulu kurucu ve öğrencilerinin en önemli özelliği, keskin bir araştırma, gözlem ve derleme gücüne sahip olmalarıdır. Duyup gördükleri olayların açıklanmasını ve yorumlanmasını en iyi şekilde ifade etmişlerdir.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/172-thales-mo624-mo547

Taylor (1685 – 1731 ) Brook Taylor, İngiltere’de Norton kentinde 9 Kasım 1685 günü doğmuştur. Eğitimi ve öğretimi Cambridge’de Saint John College’inde görmüştür. 1712 yılında bugün kendi adıyla bilinen Taylor açılımı teoremini bulmuş ve bu teoremi 1715 yılında yayınlamıştır. Seriler, logaritmalar ve fizik konuları üzerine birçok buluşu vardır. Bunların tümünü de yayınlamıştır. Gerek bu buluşları gerekse Taylor açılımı teoremiyle genel matematiğe ve onun gelişmesine ölçüsüz yardımlarda bulunmuştur. 1712 yılında Royal Society’ye üye seçilen Taylor, daha sonraki yıllarda Newton’la Leibniz arasında süren yarışmalardan doğan sürtüşmelerde karar verecek üyelerden biriydi. Tam verimli ve oldukça genç sayılan kırk altı yaşında, 29 Aralık 1731 günü Londra’da öldü. Matematik kitaplarının tümünde Taylor teoremi hala yaşamaktadır ve daha da yaşayacaktır.

Kaynak Linki : http://www.matematikciler.org/matematik-hakkinda/unlu-matematikcilerin-hayatlari/173-taylor-1685-1731

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir